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Abstract
Over time, programming languages have become more abstract,
adding features such type safety, garbage collection, and improved
modularization. These improvements contribute to program quality
and have allowed application programmers to write increasingly
complicated programs. There are thousands of programming lan-
guages in existence, and features are routinely drawn from the ex-
isting set and recombined to produce the next generation.

Like programming languages, operating systems fundamen-
tally affect the quality of the software (including language run-
times) written on them. After all, the operating system provides—
primarily through system calls—the interface programs must use
to interact with users, other programs, and other networked com-
puters. But operating systems have evolved more slowly than pro-
gramming languages, due in no small part to the difficulty of writ-
ing them. Here we describe the interface embodied by our operating
system, Ethos, and how we used virtualization and other techniques
to develop the operating system more quickly.

1. Introduction
For decades, UNIX (and POSIX, in general) has provided a domi-
nant Operating System (OS) interface, presently providing the basis
for servers, workstations, tablets, and cellphones. Although UNIX
has accreted functionality over time (e.g., networking, graphical en-
vironments, and sensor support), its system call interface has not
undergone a clean-slate redesign [34]. This contrasts with program-
ming languages, which from the 1970s until today have radically
changed. Modern languages provide features such as type safety,
garbage collection, and improved modularization. These abstrac-
tions relieve the application programmer from focusing on low-
level details, enabling him to write higher-quality, more complex
applications.

We became interested in the level of abstraction found in
OS system calls after accumulating evidence that current levels
are detrimental to security. For example, connect and accept on
POSIX leave encryption and user authentication to the application1.
Even well-meaning developers routinely misuse or avoid the vari-
ous application-level network security toolkits necessary to provide
missing protections, and this results in software with security vul-
nerabilities [13, 17, 35, 45]. Thus we began work on Ethos, an op-
erating system that addresses security by providing system calls at
a higher level of abstraction. Ethos system calls provide protections
that cannot be bypassed. When coming up with a strategy for build-
ing Ethos, we wanted to quickly build prototypes that would allow
us to experiment with these interfaces.

Roscoe et al. used the term disruptive virtualization [37] when
describing how virtualization could allow more expedient experi-

1 With IPsec, POSIX can provide encryption independent of application
code, but it is non-trivial for an application to determine if IPsec is active,
and it is still up to the application programmer to make such checks.
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Figure 1: The Xen kernel debugging architecture

mentation with OS interfaces, and we tailored some of their ideas
for our own use. Writing an OS traditionally is a difficult task. This
is due to the unforgiving environment of communicating directly
with hardware, the idiosyncrasies found in computer architectures,
the requirement for writing device drivers, and the need to complete
many subsystems before the OS becomes useful. Here we discuss
how we used virtualization to more expediently accomplish each of
these requirements.

2. The appeal of a VMM-based approach
We began work on Ethos before there was stable Hardware Virtual
Machine (HVM) support in Xen [2]. Because of this, we chose
not to build Ethos on top of an existing microkernel. Instead, we
built Ethos by adding user-space processes, system calls, etc. to
Xen’s MiniOS. There are many known advantages to targeting
a Virtual Machine Monitor (VMM) when developing a new OS.
This includes debugging support, profiling support, device support,
and providing for backwards compatibility. We summarize each of
these here before describing some additional tricks in §3.

Debugging The Linux kernel provides a debugging interface
made up of gdb and a kernel component, kgdb. The kgdb stub
consumes 5,802 Lines of Code (LoC) on Linux 3.2. Furthermore,
using kgdb requires a second computer, connected to the debug
target using a serial cable. Because Ethos targets Xen, it is unnec-
essary for us to implement special debugging support code in our
kernel. Instead, we take advantage of gdbsx, a feature provided by
Xen.

Figure 1 summarizes the gdbsx architecture. gdbsx is a program
that runs on Dom0 that (1) communicates via Xen with the target
virtual machine, and (2) communicates with gdb over a TCP/IP
socket. The only special requirement from Ethos when using gdbsx
is that Ethos must have been compiled into an executable with
debugging information.

To automate the use of gdbsx, we wrote a program named
ethosDebug that runs Ethos, gdbsx, and gdb. ethosDebug presents
the user with four windows which provide Ethos’ console output,
terminal access to Ethos, other utility output, and the gdb interface.
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Profiling Profiling also benefits from the use of Xen. Xen pro-
vides a profiler, Xenoprof [29]. Like gdbsx, using Xenoprof to pro-
file an Ethos kernel requires only that the kernel contain debugging
information2.

We use Xenoprof in conjunction with xentop, a tool that dis-
plays various statistics about running Xen domains. Figure 2 lists
the partial output of a profile of two Ethos domains. Domain 374
(column 4) is a server and domain 376 is a client, and the two do-
mains are performing a networking benchmark. We had used Xeno-
prof to help tune portions of the kernel to maximize network speed,
and the output indicates success because the work is CPU-bound
due to two cryptographic functions.

Device drivers Device drivers consume a significant number of
LoC in OSs. We used the utility cloc to count 5,625,090 lines of
device driver code in Linux 3.2, around 50% of the total LoC in the
kernel. Device driver code is often a source of bugs, including secu-
rity vulnerabilities. One study found that they are a source of three
to seven times more errors than general kernel code [8]. Reasons
for this high bug rate include malfunctioning devices and poor doc-
umentation. Despite the large effort required, writing device drivers
is often uninteresting from a research point of view.

Luckily, virtualization provides a solution. By targeting Xen,
Ethos need only implement drivers for Xen’s limited set of virtual
devices. Ethos’ network device driver is 462 LoC, and its console
driver is 296 LoC. Although Ethos implements a single paravirtu-
alized driver per device class, it is able to make use of any physical
device supported by Xen Dom0.

Backward compatibility Perhaps most obviously, virtualization
helps address the problem of backwards compatibility. Develop-
ing an OS that provides clean-slate interfaces implies that existing
applications are not easily ported. This has been described as the
application trap. However, the use of Ethos is worthwhile—even
for a single application—because its use does not preclude the use
of other OSs supporting legacy applications on the same computer.
This has an obvious cost advantage—it is not necessary to purchase
two computers for each Ethos developer that wants to run Linux
and Ethos simultaneously. Here we find encouragement for spe-
cialized OSs in general.

3. Laziness in Ethos
We make tongue-in-cheek use of the word lazy to describe focusing
time spent while developing a new OS to maximize interesting re-
search opportunities. Our use of lazy is similar to Larry Wall’s [46].
Our focus on developing Ethos is on providing new interfaces, and
so we want to work quickly through the more mundane portions
of OS construction. To make progress, we chose to take shortcuts
when developing Ethos’ networking stack and filesystem. In addi-
tion, we tried to maximize good software engineering through the
use of something we call mixins and deliberate testing.

Shadowæmon Many of the techniques we describe below use
shadowæmon to accelerate prototyping. Shadowæmon is a Linux
program that provides various services to an Ethos kernel running
in another Xen domain. Communication between an Ethos kernel
and shadowæmon takes place over Xen’s virtual network using a
series of Remote Procedure Calls (RPCs), listed in Table 1. (We
implemented Ethos-to-Ethos networking as a set of RPCs too, so
this required little additional labor.) While we expect to eventu-
ally replace shadowæmon’s services with native Ethos implemen-
tations, shadowæmon allowed us to more quickly implement and
test Ethos’ design.

2 The support for this passive profiling has not been integrated into the
mainline Linux kernel, so we occasionally port HP’s patch to newer kernels
and make this work available at http://www.ethos-os.org/xenoprof.

Name Description
Ping A connectivity test

GetUsers Get the system user accounts
MetaGet Get the metadata associated with a filesys-

tem node
FileRead Read the contents of a named file
FileWrite Write an object to a named file

DirectoryRemove Remove the named directory
DirectoryCreate Create the named directory

Random Generate random data

Table 1: List of RPCs supported by shadowæmon

Networking As with most modern OSs, support for networking in
Ethos is necessary. For Ethos, networking is required because we
are interested in studying secure network interfaces. An Ethos host
maintains two network interfaces, one to communicate with the net-
work, and another to communicate with shadowæmon. When Ethos
boots, it reads a MAC and IP address for each of these interfaces
from the command line provided by Xen. However, we were not
interested in spending the time to implement the components of
networking that are not interesting to our research goals. This in-
cludes Address Resolution Protocol (ARP) and a host routing table.

Linux 3.2’s arp.c contains 1,000 LoC. Instead of implementing
ARP and a host routing table, we engineered our Xen configuration
so that both would be unnecessary in Ethos. First, we observed
that if we configured Xen to route packets between its virtual and
physical interfaces (instead of bridging them), then Ethos could use
the same MAC address (i.e., Dom0’s) for every outgoing packet
(we depict this in Figure 3). This is because in such a configuration,
every packet is either destined for the Dom0 host or will be routed
by the Dom0 host. The MAC Dom0 uses for its virtual network
devices is known: fe:ff:ff:ff:ff:ff.

Incoming packets are slightly more complicated as is shown in
Figure 4. Xen’s vif-route script updates Dom0’s routing tables for
each new Xen domain: the script inserts a point-to-point route (Fig-
ure 4b) for each Ethos domain going out Dom0’s virtual interface
(e.g., vifX.Y). But each host and router on a subnet must also dis-
cover Ethos’ MAC—normally hosts obtain this information using
ARP. Luckily, Linux has a feature called proxy ARP which is use-
ful here.

We configure each Dom0 virtual network interface and Dom0’s
primary physical network interface with the same IP address. This
partitions a single subnet so that each virtual network interface on
Dom0 connects to a single Ethos host, and the physical interface
connects to the remainder of the subnet. We configure Dom0 to for-
ward packets between each partition and turn on proxy ARP (sysctl
flag net.ipv4.conf.all.proxy arp). With this configuration, Dom0
will answer ARP requests on behalf of each Ethos host assuming
(1) the request was received on interface n’s partition, and (2) the
target address belongs to a host that exists on an interface other
than n. The final step is to ensure Dom0 has ARP table entries for
each Ethos host. Ethos immediately sends a packet to shadowæmon
upon booting, and shadowæmon uses this packet to update Dom0’s
static ARP table (Figure 4c). Thus when Dom0 receives a packet
destined to an Ethos host, its routing/ARP tables allow it to deliver
the packet correctly.

Filesystem Ritchie and Thompson stated “The most important
job of UNIX is to provide a file system” [36]. It is very likely that
even research OSs need one. Unfortunately, filesystems are difficult
to develop—an unappealing prospect unless you are a filesystem re-
searcher. We counted 25,829 lines in Linux 3.2’s ext4 directory and
51,584 in btrfs. Previous research has shown that even production
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CPU: AMD64 fami l y15h , speed 4551.44 MHz ( e s t ima t ed )
Counted CPU CLK UNHALTED even t s ( Cy c l e s o u t s i d e o f h a l t s t a t e ) w i th a u n i t mask o f 0x00. . .
samp les % image name app name symbol name
1235892 40.9540 e tho s . x86 32 . e l f domain374−k e r n e l . moreb i ts
739271 24.4974 e tho s . x86 32 . e l f domain376−k e r n e l . moreb i ts
96368 3 .1934 e tho s . x86 32 . e l f domain374−k e r n e l c r yp to sca l a rmu l t cu rve25519 . . .
57106 1 .8923 e tho s . x86 32 . e l f domain376−k e r n e l c r yp to sca l a rmu l t cu rve25519 . . .
. . .

Figure 2: Profile of running Ethos kernel
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Figure 4: Using proxy ARP to deliver an incoming packet to Ethos

filesystems contain many bugs [38]. We have reduced this effort to
shadowæmon’s 814 LoC and an Ethos component of 1,754 LoC.

Instead of writing a filesystem for our Ethos prototype, we
decided to take advantage of the existing filesystem on Dom0.
When an Ethos application invokes a write system call, Ethos
sends shadowæmon a FileWrite RPC that contains a path and
the contents to write. Shadowæmon then writes the file to its lo-
cal filesystem. A similar process supports an application’s use
of the read, fileInformation, removeFile, createDirectory, and
removeDirectory system calls. The fileInformation system call
is interesting in that Ethos supports file metadata typically not
present on Linux. Here shadowæmon makes use of Linux’s
getxattr/setxattr system calls to store Ethos metadata along with
the files it describes. Shadowæmon is also responsible for provid-
ing Ethos with random data using a Random RPC.

We store Ethos’s filesystem on Dom0 at
/var/lib/ethos/domainName. Thus this directory on Dom0
is equivalent to Ethos domainName’s /. We use this to our

advantage; Ethos applications are presently cross-compiled using
a Go compiler that runs on Linux. Installing a program is a matter
of copying it to /var/lib/ethos/domainName/programs/. We
also have all of the tools available to us in Linux when we need to
initialize or repair the directories and files that make up an Ethos
filesystem.

Mixins and libraries We have written much of the code in Ethos
in the form of libraries. Many functions useful in the kernel are also
useful in user space. For example, we have a string manipulation
library that is linked both into the kernel and into our user-space
C library. Our abstract data type library provides another example.
Some of this code is used in the Ethos kernel, Ethos user space,
and Linux user space. We wanted to maximize this code reuse, but
found some functions to be problematic. For example, what if a
function needs to print a value (perhaps to facilitate debugging)?
This is a very different operation whether taking place in the Ethos
kernel or user space.
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To solve this dilemma, we write mixins (named after the term’s
use in object-oriented programming). Mixins are small functions
that perform kernel- or user-space-specific work. We have written a
mixin library for the Ethos kernel, Ethos user space, and Linux user
space. To solve the dilemma above, one must simply link against
the appropriate mixin library. Each such library provides a different
mixinPrint function, whose existence is assumed by any of our
libraries that must print a value. Other mixin functions provided
include mixinExit and mixinGetTimeOfDay.

Many of our libraries can be tested independently of their use in
the Ethos kernel. For example, we extensively tested and profiled
using gprof our allocator, libxalloc, long before we integrated it
into the Ethos kernel. Furthermore, several of the libraries that we
link into the Ethos kernel have unit tests we run independently
of the kernel. Our RPC encoding library, libetn, has 34 unit tests
and 42 benchmarks, each of which run outside of the kernel. We
have found it beneficial to perform such tests outside of the kernel,
because user space is a much more forgiving environment.

System testing So far, we have discussed testing libraries before
we link them into the kernel. Here we discuss system testing. Run-
ning Ethos within Xen aids in testing the kernel. We have written a
series of tests that exercise the system calls that Ethos provides. For
each test, a script runs in Dom0 that sets up the environment for the
test. Next, the script boots Ethos which executes a test application.
After the test application makes one or more system calls it exits,
and the Dom0 script checks its results. Thus each test is automated:
we generally run all 73 of our tests in series to help detect regres-
sions during development. We have found the ability to run these
focused, automated tests to be another benefit of developing on top
of Xen.

4. The impact of virtualization on assurance
Targeting a VMM is not without its pitfalls. The VMM itself can
have bugs, and example code might also be flawed. We worked with
the Xen team to fix one such problem in 64-bit MiniOS3. We also
occasionally encounter performance regressions when updating our
Xen installation to the most recent packages provided by the Fedora
project. The cause of these were sometimes difficult to identify,
although we found the Fedora and Xen communities helpful.

One of the reasons we chose to target the Xen VMM over other
virtualization platforms is because Xen is a bare-metal hypervisor.
This is beneficial from an assurance point of view as it removes a
full intermediary OS from between the VMM and hardware. How-
ever, assurance concerns do arise in the current implementation of
Xen.

Xen’s privileged domain, Dom0, has direct access to (1) hard-
ware I/O devices and (2) the memory of other Virtual Machines
(VMs) [19]. To reduce vulnerabilities due to (1), Ethos encrypts
data sent to communication devices and file systems [7]; similar
techniques could secure keyboards and displays [32]. Vulnerabil-
ities from (2) arise from DMA accesses (which use physical ad-
dresses) and because Dom0 has the ability to migrate VMs. In the
former case, an I/O Memory Management Unit (IOMMU) can pre-
serve confidentiality and integrity. In the latter case, Xen could en-
crypt VM pages prior to Dom0 access. Thus these security risks
could be largely mitigated. An exception is availability, but unlike
failures in confidentiality and integrity, availability failures are al-
ways apparent.

The size of Xen’s code base and its exposure to Dom0 cur-
rently are impediments to building a highly secure implementation
of Ethos. Orthogonal work to reduce vulnerabilities in Xen, disag-
gregate Dom0 [9, 31], produce alternative hypervisor technologies

3 http://lists.xen.org/archives/html/xen-devel/2012-10/msg01792.html

(e.g., Nova [42]), and verify hypervisors (e.g., MinVisor [10]) will
help us address the limitations of our current research prototype.

If Ethos’s design eventually proves to have sufficient strength
and usability, it will be desirable to reimplement the Ethos research
prototype in a way which can result in high assurance. This includes
a microkernel implementation [1, 12, 30, 43, 44, 47], a minimalist
VMM, and proof of correctness [22]. As we begin this work,
we may also find it time to reimplement some of the techniques
described here in a more traditional way. Given that we are still
working on user-space evaluation, such a reimplementation would
be premature—our strategy has allowed us to focus on our research
interests.

5. Security through layering
At first glance, our notion of laziness does not appear to be a virtue
for application programmers, but we hope to show with Ethos that
this does not have to be the case. It is too difficult to write robust4

programs on modern operating systems. Evidence indicates that
the reason for this is that too much is left to application program-
mers and administrators. For example, Georgiev et al. discussed a
Chase mobile banking application that did not validate certificates
properly [17]. This made the application vulnerable to Man-in-the-
Middle (MitM) attacks, a devastating vulnerability.

Organizations such as Chase face a trade-off: they can bring
software to market quickly and maintain competitiveness, or they
can be more thorough, possibly loosing customers who expect
quick innovation. Perhaps the latter is more advantageous in the
long run, but customers seem to expect the former. Of course,
in hindsight one might tell Chase “make sure you test certificate
validation”. However, the reality is that there are just too many
security-critical details to test in each application.

Of course, we have seen this pattern before. Buffer overflows
were found difficult to test for in every application, and applications
benefit in aggregate when buffer overflow protections are moved to
their programming language. Once this is done, the protection must
only be checked once—in the language. This idea has been ap-
plied to OSs before too: a similar philosophy drove the move from
cooperative to preemptive multitasking. (There still are particular
systems which benefit from deterministic cooperative multitask-
ing and particular programs that require the control of lower-level
languages; likewise, we expect Ethos to be sub-optimal for some
non-security-critical applications.) Others have investigated raising
the abstraction level of OSs: Ford decreased the application code
necessary to maintain separate control and data connections with
Structured Stream Tranport (SST) [14], and Bittau et al. moved to-
ward ubiquitous transport-level encryption with tcpcrypt [5].

Moving protections into the OS shrinks the Trusted Computing
Base (TCB). seL4 has been formally verified, but an application
running on seL4 that relies on a Transport Layer Security (TLS)
library would need to have that library verified too. The same is
true of any library that provides encryption, authentication, or other
security services. Systems that allow applications to build security
in an ad hoc manner run the risk of becoming exceedingly difficult
to assure. A model that provides strong security services once—
at the OS level—maintains more simplicity. This is the strategy
we have adopted for Ethos. (We are not claiming that Ethos is
antagonistic to seL4. In fact, once we are satisfied with Ethos’
interfaces, it might be beneficial to port them to seL4.)

Ethos guarantees many security properties—in general these
fall into two classes, security services and security hole avoidance.
Security services include authentication, authorization, and encryp-
tion. Security hole avoidance eliminates dangerous programming

4 We define robust as a characteristic where a program continues to operate
as intended even in the face of an intelligent adversary.
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Vulnerability Protection
Missing authentication for critical function P3, P6
Missing encryption of sensitive data P7
Use of a Broken or Risky Cryptographic Al-
gorithm

P2, P3, P4,
P7

Use of hard-coded credentials P4
Execution with unnecessary privileges P1†
Allow excessive authentication attempts P4
Use of a one-way hash without a salt P4
Incorrect permission assignment for critical
resource‡ P2, P5

† in conjunction with Ethos’ authorization system
‡ with respect to authentication secrets

Table 2: How Ethos protections address common vulnerabilities

pitfalls in such areas as race conditions, aliases, and input. We ap-
proach these two security property classes differently. Security ser-
vices are implicitly provided by Ethos, so that they are ever-present,
and thus do not depend on application programmers. Security holes
are removed-by-design, by analyzing the security holes which ex-
ist on other systems and creating alternative semantics which do not
have these security-hole-inducing pitfalls. Of course, not all secu-
rity properties can be solved by careful layering, but the opportunity
here is very large.

Ethos’ security services are compulsory, meaning that program-
mers cannot incorrectly invoke or bypass them. Ethos protections
include:

P1 Processes cannot change owners; instead, processes spawn spe-
cial children that run as a different owner from inception

P2 Applications do not have access to secret keys; instead, Ethos
isolates keys and provides access to cryptographic operations
through system calls

P3 All network connections are authenticated

P4 Authentication uses strong techniques

P5 Confidentiality of authentication databases is not essential to
security because Ethos uses public-key cryptography

P6 All communication made (client-side/local user) or received
(server-side/remote user) are subject to authorization based on
the requesting host and user

P7 All data written to disk or network devices is protected using
strong cryptography

Protections P1–P7 defeat several classes of bugs that result
in security holes. Of the CWE/SANS’ Top 25 Most Dangerous
Software Errors [27], Ethos’ protections address eight error classes,
or 32%. Table 2 shows the correspondence between Top 25 errors
and Ethos’ protections.

An example of an Ethos security service is its signature ser-
vice [33], which supports P2. Ethos maintains secret signature keys
and does not release them to applications. This model of isolation
makes it impossible for an application to divulge a key, whether
due to user error, programmer error, or compromised applications
[11, 21, 26]. In order perform a digital signature, an application
must invoke Ethos’ sign system call. Beyond key isolation, this al-
lows Ethos to apply its authorization controls to the production of
signatures. This is useful to prevent a weakly-trusted application—
such as a game found on the Internet—from signing something like
a bank transfer request.

Parsing is vulnerable to very subtle attacks, and provides an ex-
ample of security hole avoidance in Ethos. Dalı́ attacks exploit a

single file which conforms to two different formats, and thus two
different meanings [6]. Chameleon (similar to Dalı́) and Werewolf
attacks target file type inference and parsing, respectively. These
attacks evade antivirus protections—which must often determine
the type of a file before analyzing it [20]—due to type ambiguity.
Cross-site Scripting (XSS) filtering is likewise impeded by this am-
biguity [4]. Ethos addresses these problems with a type system. All
reads and write in Ethos—whether to a file, Inter-Process Commu-
nication (IPC) stream, or network connection—are restricted to be
well-formed with respect to a declared type. Ensuring programs re-
ceive only well-formed input reduces the LoC required to handle
invalid input.

6. Related work
Microkernels reduce an OS kernel to the bare minimum neces-
sary, and relegate many traditional kernel functions to isolated user-
space processes [1, 12, 16, 22, 44]. This can ease the development
of new OSs, as the microkernel itself does not need to be rewritten.
Early critiques on the performance of microkernels have largely
been addressed [24] and one microkernel, seL4, has been formally
verified [23]. We view microkernels as complementary to the tech-
niques we describe here.

Extensible kernels allow applications to directly manage re-
sources. Examples include the Exokernel [12] and SPIN [3].
Such application-specific management may improve system perfor-
mance. Like microkernels in general, extensible kernels are compli-
mentary to our techniques.

The Flux OS Toolkit (OSKit) [15] provides a reusable, low-level
OS infrastructure that can serve as the basis of new research OS
kernels. The idea behind OSKit is that existing modular compo-
nents can be combined with novel components to produce a new
OS. OSKit includes modules for kernel bootstrap loading, memory
management, filesystems, a minimal C library, and device drivers.
Some OSs save work by providing a compatibility layer, allowing
them to use drivers designed for another OS. Haiku adopted this
strategy and can make use of some FreeBSD network drivers.

Several OSs have targeted virtual machines. Qubes [39] is an
OS architecture that leverages Xen’s properties of isolation in an
attempt to better segregate security-critical applications from rou-
tine applications. Mirage investigated compiling applications into
OS kernels which run directly on top of Xen [25]. Mirage pursues
a different approach than Ethos: Ethos simplifies programming by
providing high-level, mandatory interfaces, whereas Mirage pro-
vides more control.

In some ways, Ethos’ higher abstractions resemble middleware
such as OSGi [18]. Middleware often contains bugs that give rise
to security holes [17]. Of course, OSs have bugs too, but moving
abstractions into the OS allows for a simpler overall design. Fur-
thermore, when the OS subsumes an interface, the interface bene-
fits from an OS’ property of complete mediation [40]. Other OSs
share Ethos’ strategy of higher abstractions; for example, Taos and
Singularity identify to applications the remote principal associated
with a network request [48, 49]. Indeed, virtualization allows us
to reconsider the “end” in the end-to-end principle [41]. Instead
of considering the terminating point an application, we consider it
one of many OSs running on a computer, with each OS providing
an environment appropriate for its applications.

7. Conclusion and further work
It has been estimated that the cost of developing a general-purpose
operating system is in the billions of dollars [28]. We estimate
that we saved writing approximately 30,000 lines of kernel code
through the techniques described here. Many more LoC were saved
by specializing the OS to our particular requirements. Ethos in-
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cludes only strong protections; it does not spend code supporting
weak authentication mechanisms, for example. Finally, we avoided
the need to write a large number of device drivers. Thus we pro-
pose that virtualization gives rise to the more expedient develop-
ment of specialized operating systems, such as Ethos. In addition,
virtualization has provided us with kernel debugging and profiling,
two features we would likely not yet have implemented had we not
written Ethos on top of Xen. We have found other benefits as well,
for example it is quicker to restart a kernel that crashes inside of a
virtual machine than it is to wait for real hardware to initialize.

The freedom to easily experiment with Ethos’ system call inter-
face has benefited applications. In one study, we wrote a messaging
application and compared it to Postfix. Whereas Postfix contains
roughly 2,000 LoC to support robust networking, our application
dedicates zero lines of code to network confidentiality, integrity,
authentication, and authorization. Instead, it benefits from OS-level
protections, as all Ethos applications do.

One interesting line of research would be to reimagine OSKit
as a Xen-based augmentation to MiniOS. The obvious disadvan-
tage of our approach to using MiniOS is that our modifications
to the kernel make it difficult to merge future MiniOS work back
into Ethos. Breaking MiniOS into a series of OSKit-like compo-
nents would encourage additional research into custom kernels, and
would allow those kernels to more easily incorporate new develop-
ments in MiniOS. Another area we are interested in is building an
Xen-based kernel using a higher-level systems language such as
Go.
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