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Security Property Based Administrative Controls

Jon A. Solworth Robert H. Sloan

Abstract. Access control languages which support administrative con-
trols, and thus allow the ordinary permissions of a system to change, have
traditionally been constructed with first order predicate logic or graph
rewriting rules. We introduce a new access control model to implement
administrative controls directly in terms of the security properties—we
call this Security Property Based Administrative Controls (SPBAC).
Administrative approval is required only when a security property is
changed (violated) relative to the current configuration. We show that
in the case of information flow, and its effects on both integrity and confi-
dentiality, SPBACs are implementable, and the necessary administrative
approvals exactly determinable.

1 Introduction

In sufficiently static protection systems, such as Lattice-Based Access Controls
(LBAC) [1] or Type Enforcement (TE) [2, 3], security properties such as allowed
information flow are decidable.

Unfortunately, such systems are inflexible. For LBAC, consider the two most
important security models, Bell-LaPadula [4] and Biba [5]. Both of these provide
absolute security properties: In Bell-LaPadula, the security property ensures that
the readership of information (i.e., the confidentiality) is never enlarged, and
hence information is never disclosed beyond its original readership. In Biba, the
quality (“integrity”) of an object is bounded by its lowest quality input, ensuring
that lower quality information does not pollute higher quality information.

In real systems, the security properties are not uniformly applicable. For ex-
ample, even military security systems require the ability to declassify informa-
tion, overriding the confidentiality security property of Bell-LaPadula. Similarly,
information flow integrity is not limited by Biba Integrity considerations: It is
possible to increase the ultimate quality of information beyond the worst qual-
ity input by cross checking the information. Unfortunately these overrides, while
necessary, are not part of the LBAC model.

On the other hand, TE does not have these restrictions. TE controls are
sufficient to enforce these properties yet flexible enough to selectively not enforce
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them. We believe that this is a significant advantage over LBAC and one of
the primary reasons that TE is gaining in popularity. TE also enables other
security properties to be enforced which are difficult or impossible to enforce with
LBAC, such as specifying the executables allowed to read or write an object of a
specific type. Our concern here, however, is only with information flow security
properties.

TE’s flexibility is limited since there is no provision for modifications to the
protection scheme, and hence there is very limited control over whether or how
the protection system can change. In contrast, with LBAC the lattice can be
augmented in well controlled ways ensuring that the security properties can be
maintained—for example, by adding another category or compartment. But since
TE selectively enforces security properties, it is not clear when making changes
whether a given security property should hold in that part of the system (e.g.,
confidentiality) or whether it can be violated (e.g., declassification).

We note that although both Bell-LaPadula and Biba have their genesis in
military security, they apply selectively to all environments. For example, an
owner of a personal computer may want to ensure that her credit card number
is not disclosed outside a limited number of trusted vendors1. Or a medical
practice may want to ensure that information entered into patient files is from a
hospital, lab, or staff trusted to provide such information. While it is always safe
to maintain such security properties, real systems cannot impose these properties
uniformly across the entire system.

It seems desirable to combine the elegant security properties of LBAC, and
their implications for how the system can evolve over time, with the flexibility
of selective application of security properties. To enable security properties to
hold selectively, administrative controls—those which enable changes to ordinary
permissions—are needed. We call the class of administrative controls introduced
here Security Property Based Administrative Controls (SPBAC).

In this paper, we describe a decidable mechanism for administrative controls
which ensures that administrative approval is required exactly when information
flow security properties are violated. Although there are other security properties
besides information flow, the information flow based security properties are both
interesting and important. For example, these administrative controls can be
configured to ensure:

1. Approval is never granted to violate a specific information flow security
property at a fine grain. That is, the information flow security property may
be inviolate in some parts of the system but not others or

2. Approval may require specific individuals (specified in terms of groups) to
concur in the approval.

The protection system’s initial configuration defines not only the ordinary
permissions, but also the administrative controls to enable a security property

1 The mechanisms discussed here are the access control part of providing such protec-
tions; they need appropriate network authentication mechanisms to be complete.



to be selectively enforced. Changes to the ordinary protection requires adminis-
trative approval only if it modifies some existing security properties.

Trivial changes to the protection system, that have no impact on the secu-
rity properties, do not require any approval2. This significantly simplifies the
mechanism needed while ensuring that security properties are maintained.

The paper is organized as follows: In Section 2 we review related work. In
Section 3 we describe the mechanisms of our model to support ordinary—that
is, non-administrative activities. Of particular interest is a new permission we
call mayFlow. In Section 4 we describe the administrative controls and their
rationale. In Section 5 we show that the administrative approvals necessary can
be exactly determined, identifying the security properties which are violated and
requiring the appropriate administrators to concur in a change to the system.
Finally, we conclude in Section 6.

2 Related Work

One of the problems that occurs with sufficiently dynamic protection systems is
that security properties can be undecidable: Harrison, Ruzzo, and Ullman first
showed that a security property, safety was undecidable in their model [6].

Sandhu’s Typed Access Model (TAM) [7] associates a fixed type with each
subject and each object. Although TAM has the same undecidable safety prop-
erty as HRU, Sandhu showed that if TAM is restricted to be monotonic then
the problem is decidable. More recently, Soshi [8] showed that a different, non-
monotonic restriction, Dynamic TAM, also has a decidable safety property, under
the restriction that the number of objects in a system is bounded.

Take-grant can be used to represent information flow issues which are decid-
able [9], but does not support administrative controls..

RBAC models have traditionally been constructed using either first order
predicate logic or graph transformation rules. Unfortunately, either of these con-
structions can lead to undecidability results. For example, both RBAC’96 [10]
and ARBAC’97 [11] are undecidable [12, 13]. The most vexing problems for de-
cidability seem to arise from administrative controls.

Tidswell and Jaeger created Dynamic Typed Access Control (DTAC) which
extends TE to dynamic types and is capable of implementing administrative
controls [14, 15]. These were implemented as runtime checks in the operating
system to ensure that various safety properties are not violated [16]. In this
paper, we show how security properties can be enforced statically and enable
administrators to understand when and where they are being violated.

Koch and colleagues described a model based on graph transformations, and
showed that it was decidable if no step both added and deleted parts of the graph
[17, 18]. This means that no command may both remove and add privileges. This
restriction can be viewed as a somewhat milder form of monotonicity. Take-Grant
also obeys this restriction.

2 Some simple approval might be necessary to prevent creation of superfluous entities.



We have recently shown that administrative controls for classical DAC sys-
tems can be implemented in a decidable language [19]. The SPBAC model here
uses both the groups and unary permissions of the DAC model. The full SPBAC
information flow model is also decidable [20].

As with Foley, Gong, and Qian [21] we make extensive use of relabeling to
encode protection state: Foley et al. allow a user to relabel an object to one she
cannot access. In our case, relabels are used to change group membership and
are associated with permissions.

We note that while we discuss information flow, we do not consider covert
flows, which in any event are tied to the execution model.

3 Ordinary Privileges

Our model consists of users, objects, labels, permissions, and groups. Each user
is authenticated and individuals who can use the system are one-to-one with
users. A process derives its authority to perform an operation from the user on
whose behalf the process executes.

3.1 Unary and mayFlow Privileges

Privileges to access an object are based on the label of that object. Each label
l and privilege p is mapped to a group of users who have privilege p on objects
with that label. This mapping is defined when the label is created and thus
the group is fixed, although the group’s membership can change. Each label is
mapped to three groups:

– r(l): the group which can read objects labeled l.
– w(l): the group which can write, that is, create or modify, objects labeled l.

Write privileges do not imply read privileges.
– x(l): the group which can execute objects labeled l3.

A new binary privilege, mayFlow is introduced to control information flow:

– mayFlow(l, l′): the group that can write l′ after having read l. This is a nec-
essary, but not sufficient condition since mayFlow does not include privileges
to read l or write l′.

Therefore, for a process executing on behalf of user u to read l and then write
l′, the following must hold: u ∈ r(l)∩w(l′)∩mayFlow(l, l′). Note that the above
must hold for each l read prior to writing l′.

MayFlow need not be defined on all label pairs. For pairs on which mayFlow

is not yet defined, the specified flow may not occur. Unlike with lattices, mayFlow

is not transitive, so each allowed flow must be individually specified.

3 Execute privileges are included here for completeness; they do not play any further
role in this paper.



Bell-LaPadula Example. Consider the diamond lattice shown below. Let clearedx

be the group of users whose clearance level is x or above. Bell-LaPadula for this
lattice can be represented with mayFlows as follows:
For all x, y such that in the lattice x ≤ y:

mayFlow(x, y) = clearedL

All other mayFlows have the value of the empty group.
In addition, for all clearances x:

r(x) = w(x) = clearedx
L

H

M2M1

The user groups are defined taking advantage of the ability of our model
to construct hierarchical groups (see the next subsection). Hence, clearedL ⊆
clearedM1 ⊆ clearedH and clearedL ⊆ clearedM2 ⊆ clearedH . Note, for exam-
ple, that a process which reads objects labeled respectively M1 and H cannot
then write an object labeled M1 since mayFlow(H,M1) is the empty group.

We note that Bell-LaPadula does not specify access control rules but rather
describes constraints which must be satisfied by the access control rules. Many
variants of Bell-LaPadula can be constructed by modifying the above rules or
group construction.

3.2 Groups

The group structure is summarized here and is based upon Solworth and Sloan
[19] where more details and examples can be found.

A group set defines a collection of related groups. The structure of the group
set enables relationships to be maintained between its constituent groups such
as hierarchy of groups or partitioning of users between groups. Instead of using
constraints to maintain relationships, our mechanism relies on permissions.

Group objects are 1-for-1 with users in the group set. Each group set contains
0 or more group objects with labels 〈U, G〉 where U is a user ID and G is a group
tag which is unique to the group set (the object does not have any contents, only
its label is of interest). At any given time, for each group set and for all users
U , there is at most one label whose first component is U .

Group membership is defined using a set of patterns applied to the group
object labels. Each pattern is of the form 〈∗u, G〉—matching any user with group
tag G, or of the form 〈U, G〉—matching user U and group tag G. Group relabels
change group tags and hence group membership.

Changing a user’s group membership within the group set’s groups is con-
trolled by relabel permissions. The permission Relabel(G, G′) = g enables a
member of group g (the membership secretary) to change a group object labeled
〈U, G〉 to 〈U, G′〉, for any U .

When adding a new user U to the system, U can be automatically added to
the group set. The group set’s new user rule specifies an optional tag G. When U

is added to the system, the group mechanism creates a group object with label



〈U, G〉. Group objects can only be created by the group mechanism, and only
when initializing the group set or when adding a new user.

A user U is removed by permanently disabling their login, after which U ’s
group objects can be garbage collected.

The general properties of group sets are:

– A group determines a set of users and each group is in some group set.
– A group’s membership is controlled by a membership secretary which is itself

a group.
– New users can be automatically added to a group set (and to its groups) as

a consequence of creating the user.
– Changes in group membership can be constrained by relabel rules.
– Groups in a group set can be constructed so that the groups have relative

structure, such as hierarchy (one group always contains another) or partition
(a user cannot be simultaneously a member of two separate groups).

The membership secretary mechanism constrains group membership and is inde-
pendent of the security property administrative controls discussed in Section 4.

This completes the definition of groups but there is an issue which arises
when a user U is removed from a group g via a relabel. Under this condition, to
maintain the relative structure properties on group sets, all processes running on
behalf of U and having used privileges based on membership in g are terminated.

4 Administrative Privileges

Conceptually, the system is configured, verified, and then made operational, or
goes “live”. Before the system goes live, entities such as groups, labels, objects,
permissions, and users may be created.

After the system goes live, instances of each of these entities can still be
created. To create entities after the system goes live which modify the security
properties, security property approval must be given appropriate both to the
security properties changed and to the part of the system where the changes
occur.

We distinguish three separate levels of actions that can be performed in our
model:

Ordinary These actions are governed by the mechanism described in Section 3,
and include (1) create, read, and write objects and (2) change membership
of groups (including the addition of new users)4.

SysAdmin Actions Actions performed by system administrators (except for
adding new users) but which do not violate any security property. These ac-
tions include the (1) creation of new groups, (2) definition of new mayFlows
not requiring security property approval, and (3) the creation of new labels.

4 The rationale here is that since any user could be in a membership secretary and
therefore change group membership, and since new users only gain privileges through
group membership, it is logically consistent to have in the same category everything
about how a group evolves.



Security Property Approvals Actions performed by administrators which
require approval because they directly or indirectly effect security proper-
ties. When security property approvals are requested, an administrator is
given all the information needed to make a decision. The security property
approvals include (1) integrity relations and (2) mayFlows which violate
existing security properties.

The idea here is that SysAdmin Actions can be delegated to technical adminis-
trators because they do not effect the core security properties of the system.

In Figure 1, our SPBAC hierarchy is shown. The layered design ensures a
given layer’s implementation only depends upon lower layers; hence there can
be no loops in the layer dependencies. As a consequence of our layered design,
administrative controls have no effect over groups, and in particular over group
membership. Hence, security property approvals need to be resilient across all
future group memberships. (The group membership mechanism restricts group
membership, so this is a meaningful goal).

groups

Administrative

Ordinary Permissions

Fig. 1. Access Control Hierarchy

Our primary focus shall be on the effect of defining new mayFlows. (Note
that existing permissions cannot be changed5 once established). Secondarily, we
shall be concerned with the issues that effect future approval of mayFlows.

In subsection 4.1 we will describe the administrative entities that need to be
added, beyond what is necessary for ordinary permission, to support changes to
the information flow properties of the system. In subsection 4.2 we describe how
we keep track of the relevant past actions. In subsection 4.3, we describe the
conditions under which security property approvals are required.

4.1 Administrative entities

We introduce here the entities to support administration of information flow
security properties. These are the administrative permissions associated with
labels and integrity relations on pairs of labels.

5 However, existing permissions can be added incrementally by defining a new
mayFlow .



Administrative permissions associated with labels For information flow, all secu-
rity property approval is associated with labels. In particular, for each label we
define three administrative permissions at the time of label creation:

ac(l) The (administrative) group which can approve exceptions to confidential-
ity for label l;

ai(l) The (administrative) group which can approve exceptions to integrity for
label l. These exceptions either allow flows violating current integrity rela-
tions or create additional integrity relations; and

af(l) The (administrative) group which can approve flows into or out of l.

We note that the first two permissions, ac(l) and ai(l), are for security property
approvals while the last permission, af(l) does not effect security properties.

We shall require that administrative groups—those used for administrative
permissions—are distinct from ordinary groups—those used for ordinary per-
missions. Furthermore each administrative group is the only group defined in its
group set. These properties hold not only for the administrative group, but also
for its membership secretary (and recursively for their membership secretaries,
etc.). The purpose of these restrictions on groups is to ensure that (i) adminis-
trative permissions don’t interact with ordinary permissions and (ii) that there is
no interaction between administrative groups in which a group being nonempty
requires another group to be empty.

Integrity relations Each ordered pair of labels can (optionally) be associated
with an integrity relationship. (If no integrity relationship is defined between a
pair of labels, we must assume the worst case). From an integrity standpoint,
it is always safe to include information from an object with greater integrity
into one with lower integrity. Hence, no integrity security property approvals are
required to allow a write to an object with integrity level i after having read
only objects whose integrity levels are at or above i.

Definition 1. The relative integrity of two labels, l and l′ is written
geqIntegrity(l, l′), meaning that the integrity level of l is at least as high as
l′. The transitive closure of the relationship geqIntegrity is called the effective
integrity and is denoted l � l′. It is reflexive and transitive.

Note that the effective integrity is not a partial order, because there can exist
two distinct labels l 6= l′ with both geqIntegrity(l, l′) and geqIntegrity(l′, l).
Instead, effective integrity is a poset of integrity levels, where multiple labels
may correspond to one integrity level.

4.2 Tracking past actions

The analysis provided in section 5 will consider future actions. In order for this
to track all flows, we also need to track past actions. The information on past
actions is all relative to the flows over a defined mayFlow(l, l′).



We define didFlow(l, l′) to be the set of labels that could have actually
flowed across mayFlow(l, l′). The set didFlow(l, l′) tracks the actual flows, and
is updated every time a process writes l′ after having read l.

Let flowed(l) =
⋃

l′∈system didFlow(l′, l) ∪ {l}. Then:

didFlow(l, l′)← didFlow(l, l′) ∪ flowed(l)

Note that the granularity of information is at the label level—not the object
level—and hence forms an upper bound on information flow. We next define
flow along P to capture past flows.

Definition 2. Let P be path [l1, l2, . . . , ln]. There was a (past) flow along P
if l1 ∈ didFlow(li, li+1) for 0 < i < n.

4.3 Security property approvals

We now consider actions which might require security property approval.
As described in Section 3.1, if mayFlow(l, l′) is not defined, then information

cannot directly flow from l to l′, absent an action to create a mayFlow edge.
The mayFlow relation describes a permission. We shall use the the term can

flow to denote the flows that are actually possible without any SysAdmin actions
or security property approvals. That is, information can flow from l to l′ if and
only if there is a sequence of labels [l = l1, l2, . . . , l

′ = ln] such that in sequential
order for i = 1 . . . n − 1 some user ui can (1) read li, (2) write li+1, and (3)
mayFlow li to li+1. Such a sequence of labels is called a can flow path. Can flows
denote possible future flows. To get all possible flows, actual past and possible
future flows must be combined. Hence given a past flow along [l1, l2, . . . , lk] and
a can flow [lk, lk+1, . . . , ln] there is an extended can flow [l1, l2, . . . , ln], because
that information has flown from l1 to lk and could flow to ln.

Now we consider the requirements for security property approval to add a
mayFlow definition for a pair of labels. In an SPBAC, security property ap-
proval is needed for exactly those changes that affect the security properties of
the system. The effect can be either direct or indirect. For example, adding a
mayFlow definition changes the “extended can-flow paths” in the system and
so obviously is directly related to security properties. Other operations, such as
defining an integrity relation, are indirectly related to the security properties
since their definition is used in determining whether the security property holds.

Confidentiality depends on both the extended can-flow paths and on the
readership. The readership is totally defined by the read permissions on a label
(i.e., r(l)) together with the group definition. Defining confidentiality in terms
of extended can flow paths means that the extended can flow path [l1, l2, l3] is
different from [l1, l4, l3] even if the only readership which can be less than l3 is
l1. The rationale is that l1’s administrator may trust the group who can write
l2 (after reading l1) to remove sensitive information when doing so, but is un-
willing to similarly trust the corresponding groups for l4. This example is shown
graphically in Figure 2. It is exactly the violation of security properties (such



as information flow) which must be examined by administrators to determine
appropriate trust. These trust issues are external to the system—that is, they
must rely on the judgment of the trustworthiness of groups—and hence can only
be decided by administrators.

l1

l2

l3

l4e1 e2

Fig. 2. Path based approval where edges indicate can flow

Integrity is, as usual, more subtle than confidentiality. Biba captures the
integrity issues arising from the quality of inputs6. The quality of the inputs
cannot be determined from the access controls but must be separately specified.

Integrity security property approval is needed only on information which
flows from li to ln where li 6� ln and for which the extended can-flow path used
have not been previously approved. Such a flow is reasonable only in limited
circumstances—that is, when there is some action which increases the quality of
the output over the input. Hence, any time “questionable” inputs are incorpo-
rated somewhere along the chain, ai(ln) must give security property approval.
For example, integrity can be raised by a user with sufficient judgment and/or
knowledge to vet the information or by cross checking against various sources.
The entity that so raises the level can either be a user or a program. Once again
the particular extended can-flow path is critical, because only the path ensures
that the integrity has been raised in an appropriate way.

We next give formal requirements of security property approval. Adding a
new mayFlow(l, l′) gives rise to a new set of extended can-flow paths. If there
exists a new extended can-flow path P = [l1, l2, . . . , ln] such that:

Confidentiality It is possible that r(ln) 6⊆ r(l1) then approval by ac(l1) is
needed.

Integrity The condition l1 6� ln holds then approval by ai(ln) is needed.

In addition, approval is required by af(l) and by af(l′), but these are not security
property approvals, they are merely SysAdmin actions. We are also interested in
any indirect effect which would change the approvals needed by a direct effect.
There is only one indirect effect which arises from adding an integrity relation-
ship.

6 The various implementations of Biba, including low-water mark and ring integrity,
do not vary in what information may flow but only in how the processes are labeled
and whether objects are relabeled.



Add integrity relationship. Unlike confidentiality, which is defined implicitly
via the read permission, integrity must be defined separately from permissions.
Hence, to define this new relationship geqIntegrity(l, l′) all labels whose integrity
is effected by the relationship must agree.

It is flow from higher integrity levels to lower integrity levels which requires
no approval. Hence, establishing a relationship geqIntegrity(l, l′) that induces
l0 � l1 must be approved by ai(l1), since l1 is agreeing to accept future flows
from l0 without question so it must approve the new relationship.

5 Formal results on system properties

In this section, we give a number of formal results about our system showing
that the security property approvals can be exactly computed. We begin with
a discussion of an appropriate state space to represent such a system. Next we
show that the mayFlow system is reasonable in the sense the we can exactly
determine:

– The can flow and extended can-flow paths;
– The security property approvals needed for confidentiality and integrity for

a new mayFlow definition; and
– The flows possible without any security property approvals.

Together, these show that everything needed to implement our administrative
controls can be implemented.

5.1 State space of SPBAC

Definition 3. A state of a system includes the following information about the
system: set of current users, the set of current groups and their memberships,
the set of current labels, the assigned permissions and integrity levels. The state
space SS(s0) is a directed graph on states that includes s0 and every state
reachable from s0 by a sequence of legal changes to the system, and has an edge
(s, s′) exactly when s′ is a legal successor state to s. The ordinary state space,
SSo(s0) is the subset SS(s0) reachable from s0 using only ordinary actions.
The approvaless state space, SSa(s0) is the subset SS(s0) reachable from s0

without any security property approvals.

The possible changes from one state to the next include: a user being removed
or added to a group (including a new user being added to a group when added to
the system), any SysAdmin actions, and any actions requiring security property
approvals.

Definition 4. A sequence of labels sl = [l1, l2, . . . , ln] (e.g., a can-flow path) can
be embedded in SS(s0) (respectively SSa(s0), SSo(s0)) (for information
flow) if there exists a sequence of states ss = [t0 = s0, t1, t2, . . . , tn−1], where
for each 0 < j < n:



– either tj = tj−1 or tj is a successor of tj−1 in SS(s0) (respectively SSa(s0),
SSo(s0)) and

– in state tj there exists a user who can (1) read lj, (2) write lj+1, and
(3) mayFlow(lj , lj+1).

Notice that a sequence of labels that can be embedded in SSo(s0) is a can-
flow path.

Determining approvals for a mayFlow

Confidentiality or integrity security property approval is needed when defining
a new mayFlow(l, l′) if the definition would add a new extended can-flow path
that violates the confidentiality or integrity relation described in Section 4.3. We
next exhibit an algorithm to determine this, developed in a series of lemmas.

The key to determining approvals is generating the set of all can-flow paths.
From this, we will then show how to calculate the new extended can-flow paths.

Lemma 1. There is an algorithm to determine which can-flow paths exist in a
given state s0 of the system.

Proof. We first show how to construct a finite state space from SSo(s0)—
unfortunately, SSo(s0) is not finite because of the addition of new users. The
constructed state space contains only information about the groups, and in par-
ticular two kinds of information about the groups: which groups are empty (for
membership secretary) and whether there is a particular user who is simulta-
neously a member of various read, write, and mayFlow groups for information
flow.

Then we show that a bounded algorithm can compute all the can-flow paths.
The representation of SSo(s0) is an extension of the form used in [19]. We use

a tuple of sets, one set for each group tag that exists in state s0. The elements of
these sets can be any or all of: (1) initial user IDs (for users existing in state s0);
(2) L − 1 newly minted user IDs, where L is the number of labels; and (3) the
special symbol ⊤, representing an arbitrary number of new users. (As we shall
see, the reason that L-1 newly minted user IDs are needed is that an existing
can flow path will require at most L− 1 mayFlow traversals.)

In our representation of the initial state of s0, the elements of g’s group tag set
include all users U such that a group label 〈U, G〉 exists in state s0. Additionally,
the newly minted user IDs and the element ⊤ are in G’s group tag set if some
group set contains a rule for adding new users with tag G. The ⊤ indicates an
unbounded number of group labels with tag G (one for each new user) could be
added at any time after state s0; the new IDs represent named new users.

To determine successor states, we will need to know whether various groups
in the current state are nonempty. Group g0 is nonempty in a state if and only
if there is some group tag G such that group g0’s pattern contains either

1. the pair 〈∗u, G〉 and the group tag set of G is nonempty, or
2. the pair 〈U, G〉 and initial user U is in the group tag set of G.



Now we compute successor states. Each relabel rule for group labels is of the
form “For any user U , a group label 〈U, G〉 can be changed to 〈U, G′〉 by any
member of group m.” Such a rule leads to new states if both the membership
secretary group m is nonempty in the current state, and G’s group tag set is
nonempty. In this case, for each user ID U in G’s set, there is a successor state
in which U is removed from G’s set and added to G′’s set. Additionally, if G’s
set contains ⊤ and G′’s set does not contain ⊤, then there is a successor state
in which both contain ⊤. This is because if there is an unbounded number of
G group tags for added users, then using relabels we can create an unbounded
number of G′ group tags while still retaining an unbounded number of G group
tags. Since we added new users to every initial group that could get new users in
the initial state, we need not worry about the introduction of new users later.)
There are only finitely many possible states, so the construction must halt.

Now we need to compute the set of can-flow paths from this finite represen-
tation of SSo(s0). A flow between two different labels l and l′ can occur in a
state s of SSo(s0) if and only if there is a user—either initial or named new
user—who is in all three groups r(l), w(l′), and mayFlow(l, l′) in state s. (The
L−1 newly minted users are needed because it may be that no initial user could
ever become a member of r(l) ∩ w(l′) ∩mayFlow(l, l′) but that a newly added
user could. In the worst case, we would need L− 1 such newly added users, one
for each edge of a flow path containing all L labels.) Now we compute for every
state which ordered pairs of labels can have flow in that state.

Now cf = [l1, . . . , ln] can be embedded in SSo(s0) if and only if there is a
path through the state space starting at the initial state and passing through
states where each can-flow edge (li, li+1) is possible, in order for 1 ≤ i ≤ n− 1,
with no repeated states between any two can-flows (because we could delete
such a cycle). (It is possible that multiple successive can-flow edges could all be
located in one state.)

Corollary 1. For any two fixed system state s0 and s1, there is an algorithm
to determine which extended can-flow paths exist in s1 and not in s0.

Proof Sketch. First, for each of the two states, calculate all the can-flow paths.
Next, for each of the two states, for each possible path P , determine whether
there was a past flow along P using the didFlow information. For each of the two
states, a path is an extended can-flow path if it can be formed as the concate-
nation of a path with past flow and a can-flow path. Finally, take the difference
of the two sets of extended can-flow paths.

Lemma 2. For a fixed state of the system s0, there is an algorithm to deter-
mine which integrity security property approvals, if any, are needed to approve
a request to define mayFlow(la, lb) = g.

Proof. Calculate which new extended can-flow paths approving the request
would add using Corollary 1. Without SysAdmin actions, the labels and the
effective integrity relation are fixed. So for each new extended can-flow path,
cf = [l1, . . . , ln], check if l1 � ln. If not, ai(ln) must approve.



Lemma 3. For a fixed state of the system s0, there is an algorithm to determine
which confidentiality security property approvals, if any, are needed to approve
a request to define mayFlow(la, lb) = g.

Proof. Similarly to the proof the Lemma 2, calculate which new extended can
flow paths would be added by approving mayFlow(la, lb) = g. For each new
P = [l1, l2, . . . , ln], security property approval by ac(l1) is needed if in any state
reachable from tn−1, r(ln) 6⊆ r(l1).

We are now ready to state:

Theorem 1. The exact security property approvals needed to define
mayFlow(la, lb) = g are computable.

Proof. It follows immediately from Lemmas 2 and 3.

Finally, we show that we can analyze which information flows are possible
with no security property approval. That is, which flows could occur in the
approvaless state space (using only ordinary actions and SysAdmin actions that
do not require security property approval). This is an extension of Theorem 1.

Theorem 2. Given any state s0, it is decidable whether information can flow
from label l to l′ without any security property approvals.

Proof. First, observe that we can still ignore the addition of new labels. Without
any security property approvals, a new label will have no integrity relation to any
other label, and in that case it cannot have any flow in or out without security
property approval of a mayFlow.

We argue that the only new groups needed are all the constant one-user
groups. With no new labels, the only place new groups could be used would
be to define new mayFlows. It might be that a “good” choice of group for a
mayFlow would limit the number of new can-flow paths, and hence extended
can flow paths, created. However, it suffices to consider constant groups that are
as small as possible, and changing groups that have some relation (e.g., disjoint)
to existing groups. For the second case, the groups must be in the same group
set. (This argument is elaborated in [20].)

We next extend the construction of SSo(s0) in Lemma 1 to construct a
representation of SSa(s0). In particular we must consider for each state whether
there is a successor state which defines a new mayFlow.

First add to each state the set of currently defined mayFlow permissions. The
construction is similar to that in the lemma, with the addition that for each state
and each currently undefined mayFlow(la, lb) in the state, we add a successor
state which contains mayFlow(la, lb) = r(la) if it can be done approvalessly. The
determination of whether the mayFlow definition is approvaless can be done by
Theorem 1.



6 Conclusions

In this paper, we have introduced a new access control model called Security
Property Based Administrative Controls (SPBAC). A SPBAC system seeks to
maintain security properties, such as confidentiality and integrity, by:

– determining the effect on security properties of proposed (administrative)
changes to the ordinary (non-administrative) part of the protection systems
and

– seeking appropriate administrative approvals for those security properties
which are violated.

An SPBAC allows selective violation of security properties, easy approval of
changes which do not effect security properties, and localized (that is, dis-
tributed) control of the system by different administrators.

We believe, and give some evidence here, that the security properties violated
in an SPBAC are exactly those that need reasoning about the trust placed in
individuals to perform sensitive functions. These are the issues that an admin-
istrator should be thinking about when making changes to a system.

For information flow, we show how the security properties we develop imple-
ment Biba Integrity and Bell-LaPadula Confidentiality. We describe the design
of such a system and its rationale, in particular a permission we call mayFlow

and administrative groups associated with labels.
We show that the properties needed to perform administrative controls are

decidable: (1) That we can exactly determine information flows (can-flow path),
(2) that we can tell what security properties are violated and hence what admin-
istrative approvals would be necessary, and (3) we can determine all the flows
that would be possible without violating any security property.

Our proofs rely on a state space construction. However, the state space is
needed only to perform exact analysis. For administrative approvals it is cer-
tainly possible to tradeoff more approvals against much faster computation of
the approvals requested.

SPBACs security properties are decidable [20] in a domain where access
control methods have historically not been—that is administrative controls.
Moreover we believe, and give some evidence in this paper, that they are non-
restrictive in the sense that they can represent all (or almost all) the relevant
properties of one or more security properties.
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