
Decidable Administrative Controls based on Security Properties

Jon A. Solworth and Robert Sloan

Abstract

It is a desirable goal for a protection system to be expressive (providing the desired protec-
tions), robust (enabling the system to change without invalidating protections), and analyzable
(so it can be understood which protections are provided). Of particular interest in analyzing a
system is the decidability of security properties. If the system is not analyzable, how does one
know what protections are being provided?

Protections can be provided at two levels: the ordinary privileges and the ability to change
the system via administrative controls. Administrative controls provide a graceful means to
perform the inevitable modifications to the system, that is to provide robust protection systems.

To date, existing protection systems are able to achieve at most two of expressibility, ro-
bustness, and decidability. In this paper, we explore administrative controls which enable the
security properties of information flow to be selectively enforced, and show that they have de-
cidable information flow security properties, thus simultaneously achieving all three of these
goals.

1 Introduction

It is a desirable goal that a protection system be expressive, robust, and analyzable. A protection
system is expressive if the desired protections can be implemented, while neither over protecting
(and thus denying operations which should be allowed) nor under protecting (and thus allowing
operations which should be denied).

A protection system is robust if it allows the system to change while maintaining appropriate
protections, otherwise it is fragile. Protection systems which are robust support controlled change
of the privilege structure to allow new applications, changes in existing applications, and changes
in the structure of the organization. The controlled change means that ordinary permissions can
be changed and that the degree of change can be bounded: The mechanisms to change the ordi-
nary permissions are themselves part of the permission structure and are called administrative
controls. With well defined administrative controls, the need to restructure the system and to
(re)verify its security properties from scratch is dramatically reduced or eliminated. Verification
is often prohibitively expensive, resulting in the dilemma of either not making needed changes or
performing inadequately verified changes. Hence, administrative controls promise more extensible
and/or lower cost systems. Note that a system-wide approach is needed to achieve robustness since
adding a new application can render existing applications insecure, as the composition of two secure
systems is not necessarily secure.

A system is analyzable if the high-level security properties provided by the system can be
understood. After all, if one doesn’t know what protections are provided how does one know that

1

Preliminary version – January 28, 2005 – 17:22



anything is protected? There are different notions of analyzable. One is ease of understanding by
humans. Another is the ability of a program to determine whether a particular property holds,
that is the decidability of the property.

Unfortunately, it has been an elusive goal to design systems which simultaneously achieve all
three qualities of expressiveness, robustness, and decidability.

The approach taken in this paper is based on security properties, which are high-level abstract
statements about the protection of the system. Examples of security properties are information flow
confidentiality (a generalization of Bell-LaPadula), separation-of-duty constraints, and executable
constraints. Security properties are high-level because they can be understood without a technical
background and in fact, these properties have their genesis prior to computer systems1. Security
properties are implemented with protection mechanisms—the technical controls through which
protection is provided.

If the protection mechanism configuration can be analyzed in terms of its security properties,
then non-technical management can understand the security provided. Unfortunately, in many
systems, properties are undecidable as was first discovered by Harrison, Ruzzo, and Ullman (HRU)
for the low-level property of safety2.

A new class of protection mechanisms, called Security Property Based Administrative Controls
(SPBAC) has been shown to be expressive and robust with respect to (overt) information flow secu-
rity properties [SS04b]. The SPBAC is expressive with respect to information flow since any write
of x after a read of y must be explicitly allowed. This enables construction of not only lattice-type
flows but also non-lattice flows such as assured pipelines or security downgrades. Although the
above applications are drawn from military security contexts, the information flow security proper-
ties represented are completely general. For example, one may want to ensure that one’s credit card
number is never sent anywhere except to an authorized vendor (information flow confidentiality);
that the program executables come from trusted sources; or that the medical records come from
medical source information such as lab reports (information flow integrity).

The SPBAC is robust since it allows changes within limits prescribed at the time the system
becomes operational, or “goes live”. Each SPBAC object has a single label which determines its
readership and its integrity level. The prescribed limits are delimited by the security properties the
systems implements, and the information flow security properties considered here are of two forms:

generalized Bell-LaPadula confidentiality Information labeled l0 may not flow to an object
labeled l1 if l1’s readership is not contained within l0’s readership.

generalized Biba integrity Information labeled l0 may not flow to an object labeled l1 if l1 has
higher integrity (i.e., higher quality) than l0.

(Note that the object is incidental, the above statements could be written only in terms of the
labeling of information). SPBACs do not require such security properties to hold universally in
a system. In general, the security properties are always safe but not always appropriate. But if

1It may seem that executable constraints are technical, but we argue that they are standard procedural constraints
to ensure that, for example, accounts are only updated through correctness preserving transactions.

2We do not consider safety a security property since it is a low-level statement about objects, a computer system
artifact. For example, a system in which the protection of an object is immutable, but a new object can be created
with different protection but the same name (e.g., directory path) and contents, would be safe in terms of the HRU
safety property, but unsafe in any real sense. But typically, analyzing information flow security properties requires
the ability to analyze the lower level, yet similar, safety property.

2

Preliminary version – January 28, 2005 – 17:22



they currently hold in some part of the system, then they cannot be changed in that part—that
is, violated—without administrative approval. And since security properties are high level, the
administrative approval can be managerial rather than technical.

Moreover, administrative approval is only possible if the administrative group associated with
that part is non-empty. Thus, by permanently emptying the associated administrative group the
security property can be made inviolable in that part of the system.

We believe that in a security property based system, administrators’ decision making is focused
on those things which most affect security. Changes which do not violate security properties are
always safe and, as we shall argue, those that violate security properties need extra scrutiny. The
amount of administrative attention depends on the type of information, and hence in an SPBAC,
different administrators can control different parts of the system.

In this paper, we show that the SPBAC is decidable with respect to generalized Bell-LaPadula
confidentiality and generalized Biba integrity. That is, it can be determined whether it is ever pos-
sible (after a sequence of arbitrary ordinary and administrative actions) to create a new information
flows from object x to some object y and

• after which there is a user which can read y without being able to read x (generalized Bell-
LaPadula) or

• in which x is of lower quality than y (generalized Biba).

We note that since protection systems deal with safety properties, it is possible to layer additional
protections on top of these. Even if the additional layers are not analyzable, those of SPBAC layer
are and so limit information flow.

The paper is organized as follows: Section 2 describes related work. Section 3 describes ordinary
permissions. Section 4 describes administrative controls, and describes why SPBACs are both
expressive and robust. In Section 5 we show that information flow is decidable in our system.
Finally in Section 6 we conclude.

2 Related Work

It has long been known that in sufficiently dynamic protection systems, analyzing security properties
can be undecidable. Harrison, Ruzzo, and Ullman first showed that a low-level property, safety
was undecidable in their model [HRU75].

Sandhu’s Typed Access Model (TAM) [San92] associates a fixed type with each subject and each
object. Although TAM has the same undecidable safety property as HRU, Sandhu showed that
if TAM is restricted to be monotonic—meaning that privileges can never be removed—(and also
have another minor restriction), then the problem is decidable. More recently, Soshi [Sos00] showed
that a different, non-monotonic restriction, Dynamic TAM, which allows the types of subjects and
objects to change, also has a decidable safety property, under the restriction that only a fixed
number of objects can ever be created in the lifetime of the system.

As the above work predates much of the work on administrative controls, they appear not
to have been evaluated for robustness, and we are unaware of any work which evaluates their
expressiveness. Of course, reference monitors [And72] are expressive but are neither decidable nor
robust.

Lattice-based techniques [Wei69, BL73, Bib77, Den76, San93] are both decidable and robust in
the sense that new categories or compartments can be added without affecting existing protections.

3

Preliminary version – January 28, 2005 – 17:22



But they are not sufficiently expressive, even when limited to military security uses. For example,
Bell-LaPadula allows neither declassification nor assured pipelines [BK85]. Biba does not provide
for cross checking that can raise the quality of an output even above the best of its inputs.

Type Enforcement (TE) [BK85, OR91] provides much more expressibility, enabling more prop-
erties to be expressed—for example, restricting the executable which operates on an object—and
for security properties to be selectively enforced or violated. It is also decidable. However, the
neutrality of TE is achieved at the cost of a static system, and hence TE is not robust.

Full Role-Based Access Controls (RBACs) are expressive and robust. RBAC models have
traditionally been constructed using either first order predicate logic or graph transformation rules.
Unfortunately, either of these constructions can lead to undecidability results. For example, both
RBAC’96 [SCFY96] and ARBAC’97 [SBM99] are undecidable [MS99, Cra02]. The most vexing
problems for decidability seem to arise from administrative controls, which are the hallmark of
RBAC.

Koch and colleagues described an RBAC model based on graph transformations, and showed
that it was decidable if no step both added and deleted parts of the graph [KMPP02b, KMPP02a].
This means that no command may both remove and add privileges. Thus, for example, a com-
mand to change a user’s group, which usually means that the user simultaneously loses and gains
privileges, would not be permitted. This restriction can be viewed as a somewhat milder form of
monotonicity. Take-Grant [LS77] also obeys this restriction.

Tidswell and Jaeger created Dynamic Typed Access Control (DTAC) which extends TE to
dynamic types and is capable of implementing administrative controls [TJ00a, TJ00b]. These were
implemented as runtime checks in the operating system to ensure that various safety properties are
not violated [JT01]. In this paper, we show how security properties can be enforced statically and
enable administrators to understand when and where they are being violated.

Solworth and Sloan have recently shown that administrative controls for classical Discretionary
Access Controls [OSM00] can be implemented in a decidable language [SS04a]. The decidability
question they addressed was the low-level property, safety. They also introduced the SPBAC model
in [SS04b] and gave an algorithm to determine the approvals needed for a single administrative
action. In this paper, we prove the decidability of information flow in the SPBAC model over all
possible sequences of administrative and non-administrative actions.

As with Foley, Gong, and Qian [FGQ96] SPBACs make extensive use of relabeling to encode
protection state.

We consider here only overt information flow, not the covert flows which in any event are tied
to the execution model [Lam73, GM82].

3 Ordinary Privileges

The protection model consists of users, objects, labels, permissions, and groups. Each user is
authenticated and individuals who can use the system are one-to-one with users. A process derives
its authority to perform an operation from the user on whose behalf the process executes. We next
describe the group mechanism, and then the object mechanism.

4

Preliminary version – January 28, 2005 – 17:22



3.1 Groups

Every group is in exactly one group set, which is a collection of one or more related groups. The
group set consists of two parts, its definition which is given at its creation and 0 or more group
objects.

Each group object has a group label of the form 〈U,G〉 where U is a user ID and G is a group
tag which is unique to the group set (the object itself is empty; it is only the object’s label which
is of interest). The group tags of the group set are those mentioned in the group set definition.
At any given time, for each group set and for all users U , there is at most one label whose first
component is U .

A group set’s definition is fixed at its creation and consists of the following:

group definitions Each group g is defined by its pattern Pg = {G0, G1, . . . , Gn}, which is a set
of group tags. The membership of g is {U : 〈U,G〉 ∈ S ∧G ∈ Pg}, where S is the set of all
group labels in the group set.

relabel permissions For any two group tags G1, G2 in the group set, a group relabel permission
can be defined Relabel(G1, G2) = g that enables a member of a group g to change an object
labeled 〈U,G1〉 to 〈U,G2〉, for any U . The group g is either part of the group set being defined
or is an existing group.

Group g is called a membership secretary since changing the group tag changes the groups
to which U belongs. The membership secretary groups which can relabel within a group
set are drawn from the same (membership secretary) group set.

The membership secretary mechanism which constrains group membership is entirely inde-
pendent of the security property administrative controls discussed in Section 4.

adding users to the group set Group objects cannot be created directly, but are instead cre-
ated by the system at either group set initialization or upon adding a new user to the system.

initial user rule a set of group labels with which the group set is initially populated.

new user tag (optional) If present, the new user tag G specifies that for each user U added
to the system, a new group object 〈U,G〉 is created in the group set. If absent, then no
new users are added to this group set after its definition.

Notice that there are only two ways of inserting users in a group set, since group objects cannot
be created directly, but are instead created by the system at either group set initialization or upon
adding a new user to the system.

In addition to the above group sets, for each user U there exists a singleton group denoted {U}.
We note that the above description does not describe removal of users, but it is trivial to do

so, for example, by removing the ability to authenticate the user. In any event, removal operations
play no role in the decidability proofs.

Note that group membership can be constrained by relabel rules, for example, to allow groups
which only grow or only shrink. Moreover, groups in a group set can be defined via their pattern
so that the groups have relative structure, such as hierarchy (one group always contains another)
or partition (a user cannot be simultaneously a member of two separate groups).

That completes the definition of groups but we now need to describe one issue which arises from
their use. A user may be removed from a group via a relabel. To ensure that relative structure

5

Preliminary version – January 28, 2005 – 17:22



properties on group sets hold, a process run on behalf of U which has used privileges which depend
on being a member of a group is killed if U is removed from the group.

3.2 Objects

Unary Privileges Privileges to access an object are based on the label of that object. Each label
l and privilege p is mapped to a group of users who have privilege p on objects with that label.
This mapping is defined when the label is created and thus the group is fixed, although the group
membership can change. The permission assignment is (as in RBAC) by assignment of groups
(roles) to permissions. Each label is mapped to 3 groups:

r(l): the group which can read objects labeled l.

w(l): the group which can write, that is, create or modify, objects labeled l. Write privileges do
not imply read privileges.

x(l): the group which can execute objects labeled l3.

MayFlow We next describe mayFlow, a binary privilege which controls the information flow.

mayFlow(l0, l1): the group which can read l0 and then write l1. This is a necessary but not
sufficient condition since mayFlow does not include privileges to read l0 or write l1. In order
for a process executing on behalf of user u to read l0 and then write l1, we must have

u ∈ r(l0) ∩ w(l1) ∩mayFlow(l0, l1) . (1)

Note that condition (1) must hold for every label l0 read prior to writing l1.

The mayFlow relation need not be defined on all label pairs. For pairs on which mayFlow is
not yet defined, the specified flow may not occur. Moreover, unlike lattice models, mayFlow is not
transitive, so each allowable flow must be individually specified.

Bell-LaPadula Example. Consider the diamond lattice shown below. Let clearedx be the group
of users whose clearance level is x or above. Bell-LaPadula for this lattice can be represented with
mayFlows as follows:
For all x, y such that in the lattice x ≤ y: mayFlow(x, y) = clearedL. All
other mayFlows have the value of the empty group. In addition, for all
clearances x: r(x) = w(x) = clearedx. The groups that are defined are
hierarchical, so that clearedL ⊆ clearedM1 ⊆ clearedH and clearedL ⊆
clearedM2 ⊆ clearedH .

L

H

M2M1

In this example, for instance, a process which reads objects labeled respectively M1 and H
cannot then write an object labeled M1 since mayFlow(H,M1) is the empty group.

We note that Bell-LaPadula does not specify access control rules but rather describes con-
straints which must be satisfied by the access control rules. Many variants of Bell-LaPadula can
be constructed by modifying the above rules or group construction.

3Execute privileges are included here for completeness; they do not play any further role in this paper.

6

Preliminary version – January 28, 2005 – 17:22



4 Administrative Privileges

Conceptually, the system is configured, verified, and then made operational, or goes “live”. Before
the system goes live, entities such as groups, labels, objects, permissions, and users may be created.

After the system goes live, instances of each of these entities can still be created. To create
entities after the system goes live which modify the security properties, security property approval
must be given that is appropriate to both the security properties changed and to the part of the
system where the changes occur.

We distinguish three separate levels of actions that can be performed in our model:

Ordinary These actions which are governed by the mechanism described in Section 3 and include
(1) create, read, and write objects and (2) change membership of groups (including the
addition of new users)4.

SysAdmin Actions Actions performed by system administrators (except for adding new users)
but which do not violate any security property. These actions include the (1) creation of new
group sets (and hence new groups), (2) definition of new mayFlows not requiring security
property approval, and (3) the creation of new labels.

Security Property Approvals Actions performed by administrators which require approval be-
cause they directly or indirectly affect security properties. When security property approvals
are requested, an administrator is given all the information needed to make a decision. The
security property approvals include (1) integrity relations and (2) mayFlows which violate
existing security properties.

The idea here is that SysAdmin actions can be delegated to technical administrators because they
do not affect the core security properties of the system.

In Figure 1, our SPBAC hierarchy is shown. The layered design ensures that to implement
a given layer only lower layers are used, hence there can be no loops in the layer dependencies.
As a consequence of our layered design, administrative controls have no effect on groups, and in
particular over group membership. Hence, security property approvals need to be resilient across
all future group memberships. (The group membership mechanism restricts group membership, so
this is a meaningful goal).

Our primary focus shall be on the effect

groups

Administrative

Ordinary Permissions

Figure 1: Access Control Hierarchy

of defining new mayFlows. (Note that ex-
isting permissions cannot be changed5 once
established). Of secondary interest are those
things that effect future approval of mayFlows.

In subsection 4.1 we will describe the
administrative entities that need to be added,
beyond what is necessary for ordinary per-
mission, to support changes to the informa-
tion flow properties of the system. In sub-
section 4.2 we describe how we keep track
of the relevant past actions. In subsection 4.3, we describe the conditions under which security
property approvals are required.

4The rationale is that since any user could be allowed to be a membership secretary and therefore change group
membership, and since new users gain privileges only through group membership, it is logically consistent to have in
the same category everything about how a group evolves.

5However, existing permissions can be added incrementally by defining a new mayFlow.

7

Preliminary version – January 28, 2005 – 17:22



4.1 Administrative entities

We now introduce the entities to support administration of information flow security properties.
These are the administrative permissions associated with labels and integrity relations on pairs of
labels.

Administrative permissions associated with labels For information flow, all security prop-
erty approval is associated with labels. In particular, for each label we define three administrative
permissions at the time of label creation:

ac(l) The (administrative) group which can approve exceptions to confidentiality for label l;

ai(l) The (administrative) group which can approve exceptions to integrity for label l. These
exceptions either allow flows violating current integrity relations or create additional integrity
relations; and

af(l) The (administrative) group which can approve flows into or out of l.

We note that the first two permissions, ac(l) and ai(l), are for security property approvals while
the last permission, af(l) does not affect security properties.

We shall require that administrative groups—those used for administrative permissions—are
distinct from ordinary groups—those used for ordinary permissions. Furthermore each admin-
istrative group is the only group defined in its group set. These properties hold not only for the
group set, but also for its membership secretaries (and recursively for their membership secretaries,
etc.). The term administrative group closure (resp. ordinary group closure) is used to refer to
all these groups and their membership secretaries, recursively. The purpose of these restrictions on
groups is to ensure that (i) administrative permissions don’t interact with ordinary permissions and
(ii) that there is no interaction between administrative groups in which one group being nonempty
requires another group to be empty. Decidability holds for any mechanism which satisfies these
criteria.

Integrity relations Each ordered pair of labels can (optionally) be associated with an integrity
relationship. (If no integrity relationship is defined between a pair of labels, the worst case must
be assumed, that is any flow into or out of the label needs integrity approval). From an integrity
standpoint, it is always safe to include information from an object with greater integrity into one
with lower integrity. Hence, no integrity security property approvals are required to allow a write
to an object with integrity level l after having read only objects whose integrity levels are at or
above l.

Definition 1. The relative integrity of two labels, l0 and l1 is written geqIntegrity(l0, l1), mean-
ing that the integrity level of l0 is at least as high as l1. The transitive closure of the relationship
geqIntegrity is called the effective integrity and is denoted l1 � l2. It is reflexive and transitive.

Note that the effective integrity is not a partial order, because there can exist two distinct labels
l1 6= l2 with both geqIntegrity(l1, l2) and geqIntegrity(l2, l1). Instead, effective integrity is a poset
of integrity levels, where multiple labels may correspond to one integrity level.

8

Preliminary version – January 28, 2005 – 17:22



4.2 Tracking past actions

The decidability analysis provided in Section 5 must consider all future actions. In order to track
all flows, we also need to track actual past information flows. Thus we track:

didFlow(l1, l2): the set of labels which could have actually flowed across mayFlow(l1, l2). Let

flowed(l) =
⋃

l′∈system

didFlow(l′, l) ∪ {l} .

Then the set didFlow(l1, l2) is updated every time a process first reads l1 and then writes l2.

didFlow(l1, l2)← didFlow(l1, l2) ∪ flowed(l1)

Note that the granularity of information is at the label level—not the object level—and hence
forms an upper bound on information flow. We next define flow along a path to capture past flows.

Definition 2. Let P be a sequence, or path, of object labels [l1, l2, . . . ln]. There was a (past) flow
along P if l1 ∈ didFlow(li, li+1) for 0 < i < n. There has been flow from label a to label b if
there was a flow along some path starting at a and ending at b.

The information flow question studied in this paper is, “From a given initial state, for two labels
a and b, is there any reachable state in which there has been flow from a to b?” We note that this
may seem a more narrow version than the question posed in the introduction, but since first a new
label can be created with either a particular existing user or an arbitrary new user (all new users
are “born” identically) this also answers the more widely phrased question.

4.3 Security property approvals

We now consider actions which might require security property approval.
As described in Section 3.2, if mayFlow(l, l′) is not defined, then information cannot directly

flow from l to l′, absent an action to create a mayFlow edge.
The mayFlow relation describes a permission. To compute what flows are actually possible

using only ordinary actions, we shall use the the term can flow.

Definition 3. Information can flow from l to l′ if and only if there is a sequence of labels
[l = l1, l2, . . . , ln = l′] such that using only ordinary actions in sequential order for i = 1 . . . n − 1
some user ui can read li and then write li+1. Such a sequence of labels is called a can-flow path.

Can-flow paths denote possible future flows. To capture all the information about flows, actual
past and possible future flows must be combined.

Definition 4. Given a past flow along [l1, l2, . . . , lk] and a can-flow path [lk, lk+1, . . . , ln] there is
an extended can-flow path [l1, l2, . . . , ln], because that information has flown from l1 to lk and
could flow to ln.

Now we consider the requirements for security property approval to add a mayFlow definition
for a pair of labels. In an SPBAC, security property approval is needed for exactly those changes
that affect the security properties of the system. The effect can be either direct or indirect. For
example, adding a mayFlow definition changes the extended can-flow paths in the system and so

9

Preliminary version – January 28, 2005 – 17:22



obviously is directly related to security properties. Other operations, such as defining an integrity
relation, are indirectly related to the security properties since their definition is used in determining
whether the security property holds.

Confidentiality depends both on the extended can-flow paths and on the readership. The read-
ership is totally defined by the read permissions on a label (i.e., r(l)) together with the group
definition. Defining confidentiality in terms of extended can-flow paths means that l1’s administra-
tor must trust the group who can write l2 after reading l1 to either remove sensitive information
or declassify it when doing so if l2’s readership can be larger than l1’s readership. Hence, at each
stage where readership is first enlarged, approval must be given. It is exactly the violation of secu-
rity properties (such as information flow) which must be examined by administrators to determine
appropriate trust. These trust issues are external to the system—that is, they must rely on the
judgment of the trustworthiness of groups—and hence can only be decided by administrators.

Consider the figure to the right, in which [l1, l2, l3] has been previously approved; that is,
mayFlow(l1, l2) and mayFlow(l2, l3) are defined. Assume that r(l1) ⊂ r(l2) = r(l3), and hence the
confidentiality property on l1 was violated by both l2 and l3 and defining mayFlow(l1, l2) required
l1’s security property approval.

This security property approval might have been granted

l1

l2

l3

l4e1 e2on the following basis: l1’s administrator was satisfied that
users in the group which “can flow” l1 into l2 would remove
sensitive information. However, this is not the same as saying
that the flow [l1, l4, l3] is similarly vetted, and so l1’s admin-
istrator must also approve this flow if mayFlows are defined
resulting in can Flow edges e1 and e2 (showed as dashed lines
in the figure).

Integrity is, as usual, more subtle than confidentiality. Biba captures the integrity issues arising
from the quality of inputs6. The quality of the inputs cannot be determined from the access controls
but must be separately specified.

Integrity security property approval is needed only on information which flows from li 6� ln
and for which the edges used have not been previously approved. Such a flow is reasonable only
in limited circumstances—that is, when there is some action which increases the quality of the
output over the input. Hence, any time “questionable” inputs are incorporated somewhere along
the chain, ln must give security property approval. For example, integrity can be raised by a user
with sufficient judgment and/or knowledge to vet the information or by cross checking against
various sources. The entity that so raises the level can either be a user or a program. Once again
the extended can-flow path is critical, because only the path ensures that the integrity has been
raised in an appropriate way.

We next give formal requirements of security property approval. Adding a new mayFlow(l, l′)
gives rise to a new set of extended can-flow paths. An algorithm to determine the extended can-flow paths
and the determination of violations of security properties is given in [SS04b]. If there exists a new
extended can-flow path P = [l1, l2, . . . , ln] then:

Confidentiality approval is needed if it is possible that at some point r(ln) 6⊆ r(l1)∪r(l2)∪· · ·∪
r(ln−1).

6The various implementations of Biba, including low-water mark and ring integrity, do not vary in what information
may flow but only in how the processes are labeled and whether objects are relabeled.

10

Preliminary version – January 28, 2005 – 17:22



Integrity approval is needed if li 6� ln.

In addition, approval is always required by af(l) and by af(l′), but these are not security property
approvals; they are merely SysAdmin actions. We are also interested in any indirect effect which
would change the approvals needed by a direct effect. There is only one indirect effect which arises
from adding an integrity relationship.

Add relative integrity relationship Unlike confidentiality, which is defined implicitly via the
read operation, integrity must be defined separately from the permissions. Hence, to define the
relationship geqIntegrity(l, l′), all labels whose integrity is affected by the relationship must agree.

Flows from higher integrity levels to lower integrity levels require no approval. Hence, estab-
lishing a relationship geqIntegrity(l, l′) that induces l0 � l1 must be approved by ai(l1), since l1 is
agreeing to accept the integrity of future flows from l0 without question.

5 Decidability

Decidability is shown by a bounded state space construction. The construction is involved since
the natural state space is infinite.

5.1 State space

We first define a state of an SPBAC system, based on the underlying system defined in the previous
two sections.

Definition 5. A state of an SPBAC system includes the following information about the system:

1. the set of ordinary object labels together with the unary permission definitions, both ordinary
(i.e., r(l), w(l), and x(l)) and administrative (i.e., ac(l), ai(l), and af(l)) for each label;

2. the group set definitions;

3. the existing group labels;

4. the defined mayFlow permissions;

5. the defined integrity relations; and

6. the values of didFlows.

Note that the set of existing users is implicitly included in the group set definitions. For every
action described in the start of Section 4 (e.g., adding a new user or defining a new ordinary object
label), there is a transition that changes one or more components of the state. For a more detailed
treatment of transitions, see Appendix B. We next define the state space, SS(s0), which is infinite.

Definition 6. For state s0, the state space SS(s0) is a directed graph on states that includes s0

and every state reachable from s0 by a sequence of legal changes to the system, and has an edge
(s, s′) exactly when s′ is a legal successor state to s. The ordinary state space SSo(s0) is the
subset SS(s0) reachable from s0 using only ordinary actions.

The set of all reachable states is infinite for three different reasons:

11

Preliminary version – January 28, 2005 – 17:22



• An unbounded number of new users may be added.

• An unbounded number of new ordinary object labels can be created.

• An unbounded number of new group sets may be created.

We need to finitely bound the above three things, while retaining sufficient information to answer
the information flow question: “Is there any sequence of actions in the system that can cause
information to flow from label a to label b?” Together, Lemmas 13 and 14 show that to answer
the information flow question it is sufficient to construct only a portion of the state space with
a bounded number of new ordinary object labels and group sets. The number of new users that
need to be considered is bounded in Subsection 5.4 where a restricted augmented state space is
defined and the subsection culminates with our central technical result, Theorem 18, which says
that information flow in our system is decidable.

We next state one simple but useful proposition that says that loops can always be removed
from flow paths.

Proposition 7. Let s be a state in which there has not (yet) been flow from label a to label b, and
such that there is a state s′ ∈ SS(s) where there has been flow along a sequence of labels from a to
b. Then there is some sequence of transition in SS(s) in which there flow from label a to label b
along a flow path with no repeated labels.

Proof sketch: We note that extra flows serve only to increase needed administrative approvals. By
our definition of flow along a path, which requires a ∈ didFlow(li, li+1) for every pair of adjacent
labels li and li+1 on the path, we can simply remove the loop. 2

5.2 Independence of group changes and destroying extended can-flow paths

We state here two lemmas about groups. The first says that changes in group membership are un-
affected by any non-ordinary actions. The second says that changes in ordinary group membership
can only remove previously possible future flows.

Lemma 8. If there is a state in SS(s) where a particular group g in s is nonempty (resp. empty, or
contains a particular member), then there is a state where g is nonempty (resp. empty, or contains
a particular member) in SSo(s). Furthermore, that state can be reached by taking exactly the same
ordinary actions as were taken in SS(s).

Proof sketch: Actions that are not ordinary are the creation of new labels, the creation of new
group sets, and the definition of mayFlow and of integrity relations. None of those has any affect
on group membership of groups in s. 2

Lemma 9. Changes in ordinary group membership can destroy an existing extended can-flow path
or can-flow path, but can never create one.

Proof sketch: The definition of can-flow path and extended can-flow path incorporates any sequence
of ordinary actions, so includes all changes in ordinary (and non-ordinary) group membership. To
show the destruction of a path consider, as an example, a group r(l) without a new user tag. Then
all members of r(l) could be removed (via group object relabels) destroying some path out of l. 2

12

Preliminary version – January 28, 2005 – 17:22



5.3 Bridges

We next generalize the notion of defining mayFlow(a, b) to what we call a bridge. The purpose of
a bridge is to allow a flow between labels which exist in s. The decidability proof will rely heavily
on both the types of bridges which need to be constructed and the order of their construction.

Definition 10. A bridge from label a to label b relative to state s is an extended can-flow path
from a to b whose interior nodes do not include any labels existing in s. We will use the term span
to refer to an edge in a bridge.

We are interested in a single extended can-flow path from a to b. A flow from a to b is possible
iff it is possible to construct such a path. The following lemma restricts the form of bridges we
need consider.

Lemma 11. Let s be a state in which a 6∈ flowed(b), and let s′ ∈ SS(s) be a state in which there
has been a flow along P from a to b. Then there exists a sequence of transitions in the state space
in whose final state there has been a flow along P from a to b such that:

1. The only mayFlows added after s are those on P;

2. Only labels on P are created;

3. Administrative group membership is never reduced;

4. New mayFlows along P are defined in the order traversed; and

5. Any new users are added immediately after state s.

Proof: due to space limitations the proof is in Appendix A.
We next examine the types of bridges that need to considered. We show that if it is possible to

construct such a bridge, it can be done using either a single span bridge or a triple span bridge. We
also need to describe the groups used in such bridges, which turn out to be either existing groups,
singleton groups, or a special group type we call a valve group, defined next.

Definition 12. A group g is a valve iff (i) g can have any user as its only member and (ii) g can
be made permanently empty.

A valve can be constructed as follows: The group set for the valve group has two tags, G1

and G2, and every new user is created with tag G1 while existing users are created with the tag
G2. Group g has the pattern {G2}, that is, its members have the tag G2. The only membership
secretary in the group set is g, and hence Relabel(G1, G2) = Relabel(G2, G1) = g.

A valve is used as follows: First, make g consist of a single specified member u by moving u
into g, if necessary, and moving all other members of g outside of g. Second, assign a new mayFlow
permission to g. Third, u moves an object across the mayFlow. And finally, u moves itself out of
g (thus ensuring g will be forever empty). The valve is then said to be (permanently) closed.

We next give the 3-Span Lemma:

Lemma 13. If a multi-span bridge relative to state s can be built from l to l′, then a bridge from
l to l′ can be built with exactly three spans. Furthermore, the bridge can be constructed using only
groups that exist in s and one (new) valve group.

13

Preliminary version – January 28, 2005 – 17:22



Proof: due to space limitations the proof is in Appendix A.
The previous lemma bounds the length of multi-span bridges and the groups and users used

in their construction. We next limit the set of single span bridges that we need to consider. The
next lemma says that if it is possible to define mayFlow(l, l′) at all, then it can be done without
introducing any new groups.

Lemma 14. Let s′ be a state reachable from s without defining any new mayFlows. If mayFlow(l, l′)
can be defined in state s′ to create a bridge from l to l′, then mayFlow(l, l′) = g can be defined to
create a bridge from l to l′ from state s where g is an existing group.

Proof: due to space limitations the proof is in Appendix A.

5.4 Decidability of information flow

We now introduce the augmented state which can succinctly represent an arbitrary number of new
users, denoted >, added to the system. The symbol > is used to avoid a tedious counting argument
bounding the number of new users required to determine whether a membership secretary can be
made nonempty. The augmented state differs from the regular state by additional group labels:

Definition 15. An augmented state is the same as a regular state with the addition that for
each group tag G, 〈>, G〉 can be a group label. Let s> denote the augmented state formed from
regular state s and (1) adding a group label 〈>, Gi〉 for each group tag Gi that is a new user tag of
some group set in s and (2) adding n− 1 new users, where n is the number of labels in s.

Next we introduce the restricted augmented state space which is a bounded state space central
to our decidability proof. It is restricted since it allows neither new group sets, new labels, nor new
users to be added. Since it is augmented, an additional rule is needed beyond those defined in the
regular state space: If there is a definition Relabel(G, G′) = g, g is not empty, and there is a group
label 〈>, G〉 but not 〈>, G′〉, then there is a successor state which adds 〈>, G′〉.

Definition 16. The restricted augmented state space SS>(s>), is the set of augmented states
reachable from s> either by transitions that are in SS(s)—except for those which create new group
sets, create new labels, or add new users—or by the relabel transition described above. The re-
stricted regular state space from s SSr(s) are states reachable from s in SS(s) without defining
either new labels or new group sets. (See Appendix B for detailed information on transitions.)

Note that the restricted augmented state space is finite, having removed the three issues that
make the state space infinite. The next lemma says that the restricted regular state space and
restricted augmented state space answer the same information flow question.

Lemma 17. Information flow from label a to label b is possible in SSr(s) if and only if it is possible
in SS>(s>).

Proof: due to space limitations the proof is in Appendix A.
Now we give the decidability result, whose proof consists of showing that restricted regular

state space transitions are sufficient to answer the information flow questions which means that the
restricted augmented state space is sufficient to answer these questions. And since the restricted
augmented state space is bound, the information flow question is decidable.

14

Preliminary version – January 28, 2005 – 17:22



Theorem 18. There is an algorithm to decide, given a state s and two labels a and b that exist in
s whether information flow from a to b is possible.

Proof. If there is an extended can-flow path from a to b in state s, then the algorithm answers yes.
An algorithm to determine whether there is an extended can-flow path is given in [SS04b].

Next consider the case where there is not an extended can-flow path from a to b. Assume
for now that information flow from a to b is possible; we will give a finite construction that is
guaranteed to find such a flow. By Proposition 7, we need consider only loop-free sequences of
labels consisting of labels existing in s and new labels. We consider all possible orderings that
begin with a and end with b of any subset of the labels existing in s. By Lemma 13, for each
such sequence, we need add at most a bounded number of new labels (less than two new labels per
existing label in s to create bridges). By Lemmas 13 and 14, only a bounded number of new group
sets are needed (one valve group per bridge, hence less than the number of labels existing in s).

By the “only if” part of Lemma 17, for a sequence of labels that corresponds to the flow in the
regular state space, we will find a flow in the restricted augmented state space.

By the “if” part of Lemma 17, if we find flow in the restricted augmented state space, then flow
really is possible.

6 Conclusion

The goal of achieving systems which are expressive, robust, and decidable has been elusive. Al-
though there are systems which support two of these goals, until now there have been none which
support all three. In this paper we show that Security Property Based Access Controls (SPBAC)
achieves these goals with respect to overt information flow properties. In an SPBAC, the focus is
on security properties, which are high level, non-technical properties of a system. It is always safe
to honor security properties, but violating them—while necessary in real systems—requires care
and administrative approval from those who are charged with overseeing the system security.

An SPBAC is expressive with regard to information flow since it can enforce information flow
security property such as generalized Bell-LaPadula and generalized Biba. In addition, the en-
forcement of these policies is selective, allowing the policies to be violated to declassify, sanitize, or
increase quality by cross checking information.

We show how to build administrative controls which are sufficient to support confidentiality and
integrity information flow properties. Security property approval is required exactly for changes
which violate existing information flow security properties. Since security properties cannot change
without administrative approval, modification of such properties requires higher level approval.
Moreover, by the expedient of permanently emptying an administrative group, the security property
can be made inviolable. Therefore, the system both allows and limits changes and hence is robust.

The configuration of the system uses commonplace specifications. Labels, simple patterns,
unary and binary permissions on labels, relabels, and groups are the base mechanisms. But despite
the simplicity of the building blocks, it can represent very rich properties.

We then show that these information flow properties are decidable, meaning we can algorithmi-
cally answer the question of whether information contained in an object with label l1 can ever flow
into an object labeled with ln. Since a new label can be computed with a particular existing user
or an arbitrary new user (all new users are “born” identically) this also answers the more widely
phrased information flow question. This is particularly noteworthy, since previous systems with
administrative controls are either undecidable or their expressibility is limited.

15

Preliminary version – January 28, 2005 – 17:22



We believe that an SPBAC can therefore combine the best properties of lattice-based access
controls (decidable, property based, and extensible), type enforcement (decidable and selective
enforcement and violation of security properties), and role-based access controls (flexibility and
support for administrative controls).

References

[And72] James P. Anderson. Computer security technology planning study. Technical Report
ESD-TR-73-51, AFSC, Hanscom AFB, Bedford, MA, October 1972. AD-758 206,
ESD/AFSC.

[Bib77] K. Biba. Integrity considerations for secure computer systems. Technical Report
TR-3153, MITRE Corp, Bedford, MA, 1977.

[BK85] W. E. Boebert and R. Kain. A practical alternative to hierarchical integrity policies.
In 8th National Computer Security Conference, pages 18–27, 1985.

[BL73] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations
and model. Technical Report M74-244, Mitre Corporation, Bedford MA, 1973.

[Cra02] Jason Crampton. Authorizations and Antichians. PhD thesis, Birkbeck College, Univ.
of London, UK, 2002.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236–243, 1976.

[FGQ96] Simon Foley, Li Gong, and Xiaolei Qian. A security model of dynamic labeling pro-
viding a tiered approach to verification. In Proc. IEEE Symp. Security and Privacy,
pages 142–154, 1996.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE
Symp. Security and Privacy, pages 11–20, 1982.

[HRU75] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. On protection in
operating system. In Symposium on Operating Systems Principles, pages 14–24, 1975.

[JT01] Trent Jaeger and Jonathon E. Tidswell. Practical safety in flexible access control
models. ACM Transactions on Information and System Security, 4(2):158–190, 2001.

[KMPP02a] Koch, Mancini, and Parisi-Presicce. Decidability of safety in graph-based models for
access control. In Proc. European Symp. Research in Computer Security (ESORICS),
pages 229–243. LNCS, Springer-Verlag, 2002.

[KMPP02b] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-Presicce. A graph-based formal-
ism for RBAC. ACM Transactions on Information and System Security, 5(3):332–365,
2002.

[Lam73] Butler W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, 1973.

16

Preliminary version – January 28, 2005 – 17:22



[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject security.
Journal of the ACM, 24(3):455–464, 1977.

[MS99] Qamar Munawer and Ravi Sandhu. Simulation of the augmented typed access matrix
model (ATAM) using roles. In INFOSECU99: International Conference on Informa-
tion Security, 1999.

[OR91] R. O’Brien and C. Rogers. Developing applications on LOCK. In Proc. 14th NIST-
NCSC National Computer Security Conference, pages 147–156, 1991.

[OSM00] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access con-
trol to enforce mandatory and discretionary access control policies. ACM Transactions
on Information and System Security, 3(2):85–106, 2000.

[San92] R. S. Sandhu. The typed access matrix model. In Proc. IEEE Symp. Security and
Privacy, pages 122–136, 1992.

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9–19,
1993.

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for
role-based administration of roles. ACM Transactions on Information and System
Security, 2(1):105–135, 1999.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Computer, 29(2):38–47, 1996.

[Sos00] Masakazu Soshi. Safety analysis of the dynamic-typed access matrix model. In Proc.
European Symp. Research in Computer Security (ESORICS), volume 1895 of Lecture
Notes in Computer Science, pages 106–121. Springer-Verlag, 2000.

[SS04a] Jon A. Solworth and Robert H. Sloan. A layered design of discretionary access controls
with decidable properties. In Proc. IEEE Symp. Security and Privacy, pages 56–67,
2004.

[SS04b] Jon A. Solworth and Robert H. Sloan. Security property-based administrative controls.
In Proc. European Symp. Research in Computer Security (ESORICS), volume 3139 of
Lecture Notes in Computer Science, pages 244–259. Springer, 2004.

[TJ00a] Jonathan F. Tidswell and Trent Jaeger. Integrated constraints and inheritance in
DTAC. In Proceedings of the 5th ACM Workshop on Role-Based Access Control
(RBAC-00), pages 93–102, 2000.

[TJ00b] Jonathon Tidswell and Trent Jaeger. An access control model for simplifying constraint
expression. In Proceedings of the 7th ACM Conference on Computer and Communi-
cations Security (CCS-00), pages 154–163, 2000.

[Wei69] Clark Weissman. Security controls in the ADEPT-50 time-sharing system. Proc.
FJCC, AFIPS, 35, 1969.

17

Preliminary version – January 28, 2005 – 17:22



A Proofs of lemmas

Lemma 11. Let s be a state in which a 6∈ flowed(b), and let s′ ∈ SS(s) be a state in which there
has been a flow along P from a to b. Then there exists a sequence of transitions in the state space
in whose final state there has been a flow along P from a to b such that:

1. The only mayFlows added after s are those on P;

2. Only labels on P are created;

3. Administrative group membership is never reduced;

4. New mayFlows along P are defined in the order traversed; and

5. Any new users are added immediately after state s.

Proof. By Proposition 7 we may assume that P has no loops. Now for each of constraints 1–5, we
must show that it is possible to modify the flow to conform to the constraint without removing the
flow.

(1) mayFlows not on P are obviously not used for flow on P. Newly created mayFlows can
only introduce more extended can-flow paths, making it more difficult to obtain either integrity or
confidentiality approvals. So we remove all such mayFlow definitions.

(2) Once those mayFlow definitions are removed, we can remove new label definitions not on
P, since they will have no mayFlow defined in or out, and hence will not have any effect.

(3) Next, delete any transitions that reduced the membership in any administrative group
(ac, ai, or af), or the membership in any other group in the administrative group closure. This is
possible because (a) administrative groups are separate from ordinary groups and (b) administrative
groups do not interact with each other as a consequence of only one group per group set being used.

Constraint (4) is the most subtle. We are going to move certain mayFlow definitions later in
time. Let nm1, . . . , nmk be the new mayFlows on P in the order traversed. Constraint (3) means
that if the definition of nmi is moved to be later in the sequence, then the administrative groups
that approved its definition at the original time will still be nonempty. We need therefore only to
worry about additional approvals that may be needed because of the change.

Now consider all the mayFlow definitions that are made. We argue that we can move all
definitions of nmi for i > 1 later in the sequence of events so that they all are defined immediately
after the definition nm1. In particular, say nmi∗ was the last new mayFlow defined before nm1

was defined in the original chronological ordering, and consider what happens if we move the
definition of nmi∗ to immediately follow the definition of nm1. Approval of the definition of
nm1 is not affected, since having fewer other mayFlows defined could only reduce the number of
extended can-flow paths, and hence require fewer approvals.

Now, what about the approval of nmi∗? Two things may be different with its chronologically
later approval. First, some additional changes in membership in r, w, and/or mayFlow groups
may have taken place before the definition of nmi∗ in this new ordering, but by Lemma 9, such
changes could only reduce the number of approvals needed. Second, there may be some new
extended can-flow path that uses both nm1 and nmi∗ that exists only when approving nmi∗ in
the new order, because nm1 is already defined. However, this same path would otherwise have
been introduced at the request to define nm1. This is because we have exactly the same mayFlow

18

Preliminary version – January 28, 2005 – 17:22



l lx ly l′

r(l)
w(l)

r(l’)
w(l’)

r(l)
r(l)

r(l)

ry

r(l)

w(l’)valve

r()
w()

mayFlow()

Figure 2: 3 span bridge construction used in the proof of Lemma 13. Read and write permissions
are shown over the label and mayFlow permissions under the edge.

definitions and group memberships at the point where nmi∗ is defined in this new ordering with
the definition of nmi∗ immediately following the definition of nm1 as we had in the old ordering
at the point where nm1 was defined. Any approvals needed for such new extended can-flow paths
can be obtained now, since administrative group memberships are the same as at the time of the
definition of nm1 in the original order.

By a similar argument, we can next move the second to last new mayFlow definition made
before the definition of nm1 to a position immediately after the definition of nm1 (and hence
immediately before the definition of nmi∗). Continuing in this fashion, we can slide all mayFlow
definitions that originally came chronologically before nm1 so that they occur after nm1.

We then repeat the process to move all nmi with i > 2 so that they occur immediately after
the definition of nm2, and then continue in a similar way until we have all the nmi defined in the
desired order.

Finally, (5) holds since the only transition which requires the absence of users is a mayFlow
definition, which considers the absence only after the addition of all possible users (i.e., after
allowing for any possible ordinary action, including the addition of new users), and hence their
earlier existence is immaterial.

Lemma 13. If a multi-span bridge relative to state s can be built from l to l′, then a bridge from
l to l′ can be built with exactly three spans. Furthermore, the bridge can be constructed using only
groups that exist in s and one (new) valve group.

Proof. We first apply Lemma 11 to the bridge that must exist by the “if” part of this lemma to
get a bridge B = [l = n0, n1, . . . , nk, l

′] , where the ni for i ≥ 1 are new labels, and B’s mayFlows
are defined in the order in which they are crossed. Since by hypothesis B has multiple spans, it
follows that k ≥ 1.

The bridge we construct to prove this lemma is the path P = [l, lx, ly, l
′] as shown in Figure 2.

The groups used to construct the bridge are the existing groups r(l), w(l), and w(l′); a new valve
group; and a group denoted ry. We show below that it is sufficient to select ry to be a singleton
user group. (Note that such groups are added automatically upon the addition of a new user.)

The bridge is constructed in the following sequence:

1. Define new labels lx and ly, with r(lx) = w(lx) = r(l); r(ly) = ry; and w(ly) = r(l).

Assign an arbitrary permanently nonempty administrative group to all the administrative
permissions for lx and ly.

19

Preliminary version – January 28, 2005 – 17:22



2. Perform all the group membership changes on group sets in s, made when constructing B
prior to the flow across its first span. (Among other things, this will ensure that r(l) is
nonempty). No approvals are needed to make r(l) nonempty, by Lemma 8.

3. Construct the first span with valve group by defining mayFlow(l, lx) = valve. No confiden-
tiality approval is needed for the mayFlow, since lx’s readership is the same as l’s readership.
The only integrity approval needed would be from ai(lx), which is nonempty.

4. Perform ordinary flow from l to lx using any one member of r(l), which is possible because
of step 2.

5. Close the valve so that it cannot be used again. Note that now flowed(lx) = flowed(l) ∪ {lx}.

6. Perform all the group membership changes on group sets in s, made when constructing B
prior to the flow across its penultimate span, (nk−1, nk). (Among other things, this will
ensure that w(l′) is nonempty). Note that these may also be necessary to destroy some
extended can-flow paths which would otherwise require approvals.

7. Define mayFlow(lx, ly) = r(l). As before the only integrity approval needed is from ai(ly).

For confidentiality approval, choose ry to be the singleton group containing the user u who
caused the flow across the last span of B. At the time that the flow across that final span
occurred, u ∈ r(nk). Therefore, at the time the penultimate span of B was approved, the
confidentiality approvals required for flow into nk based on the group r(nk) included all
confidentiality approvals needed for the labels in flowed(l) to be read by a group potentially
including u. Here we will need confidentiality approval from at most those same ac sets plus
ac(lx), which is nonempty.

8. Perform ordinary flow from lx to ly, and then any group membership changes that occurred
between the definition of the penultimate and last spans of B in B’s construction.

9. Define mayFlow(ly, l′) = w(l′).

We require integrity approvals for flow from a label with no defined integrity relations (i.e., ly)
into l′. However, the same integrity approvals were needed for mayFlow(nk, l

′) in B and hence
must be possible. If instead, geqIntegrity definitions were defined (and approved), resulting
in nk � l′, then ai(l′) is non-empty and the integrity flow from ly can be approved.

The confidentiality approvals required must also have been given when B was constructed.
We need confidentiality approval for the group r(l′) at the time that the last span of B was
approved to read everything in flowed(l) ∪ {lx, ly}. Confidentiality approvals for (at least)
flowed(l) had to be given in the construction of B, and ac(lx) and ac(ly) are nonempty.

Lemma 14. Let s′ be a state reachable from s without defining any new mayFlows. If mayFlow(l, l′)
can be defined in state s′ to create a bridge from l to l′, then mayFlow(l, l′) = g can be defined to
create a bridge from l to l′ from state s where g is an existing group.

20

Preliminary version – January 28, 2005 – 17:22



Proof. Say in state s′ the definition mayFlow(l, l′) = g is approved for some g that does not exist
in s. Notice that g must be in a group set that does not exist in s, since all the groups in a group
set are defined at once. Notice also that g ∩ r(l) ∩ w(l′) can be made nonempty, since a bridge is
created, which therefore must be a can-flow path.

Now any new extended can-flow paths that are created when mayFlow(l, l′) = g is defined
would also be created by defining mayFlow(l, l′) to be, say, r(l). This is because there are only two
types of choices for the mayFlow group which limit the number of extended can-flow paths. One
is if there is no flow possible at all over the mayFlow, for example by defining it to be the empty
group. However, that is not possible here. The other is if the group could potentially “block” or
be “blocked” by some other group on an extended can-flow path; for instance, if this group must
be made empty in order to make another group on the path nonempty. However, that relation is
possible only between two groups in the same group set, and hence the group would need to be
part of an existing group set.

Lemma 17. Information flow from label a to label b is possible in SSr(s) if and only if it is
possible in SS>(s>).

Proof. ⇒:
Let P = [a = l1, . . . , ln = b] be the flow path in SSr(s) (n must be at most the number of labels

existing in state s). Let ui be the user who carries out the flow from li to li+1. If ui is not a user
in state s, WLOG let us give the name ui to one of the new users added to s> (all new users are
initially the same). At most n− 1 users participate in this flow, so that the n− 1 new users added
to state s> suffice.

Now, in general, make the same transitions in the augmented state space SS>(s>) as were
made in SSr(s) to accomplish the flow, with the following exceptions.

1. Do not add any new users.

2. Omit any reads or writes that are not part of the flow path.

3. Call a user in some state of SSr(s) “added” if that user did not exist in state s.

For any transition in SSr(s) that relabels an added user’s group tag from G to G′, in SS>(s>)
follow the transition that adds group object 〈>, G′〉 if it does not already exist. By our
construction, 〈>, G〉 will be present to be relabeled.

Observe that the same flow will take place in the augmented state space as did in SSr(s).
⇐: The “extra” thing that could cause information flow to occur in the augmented state space

is that > could be used to make some membership secretary nonempty, permitting it to relabel
something. However, the augmented state space is constructed so that if > is making a group
nonempty, then any number of regular, named new users could have been added and made that
group nonempty as well.

B State space transitions

B.1 (Regular) state space

The transitions of the state space correspond to the various types of actions described in the
beginning of Section 4, although those actions are more fine-grained than our states and transitions,

21

Preliminary version – January 28, 2005 – 17:22



because our states track only flows on a per label basis, and not individual reads, writes, or objects.
(This is a simplification for convenience; a more formal treatment would use more detailed states
that did track this information.)

We now list the various kinds of transitions. Notice that certain transitions updates multiple
components of the state.

Adding a new user: this transition (1) adds a group label to each group set with a new user tag;
(2) adds a new group set definition for the singleton group consisting of the new user; and
(3) adds a new group label specifying the new user in this group.

Updating didFlow: whenever some process writes l′, the for each l previously read,didFlow(l,l’)
is updated.

Relabeling of a group object: changes the existing group label in the obvious way.

Defining new group sets: defines a new group set, and also adds a new group label for each
user initially put into the new group set.

Creating a new label: Adds to the set of ordinary object labels (and also gives the unary per-
missions for the new label, as unary permissions must be defined at label creation time).

Defining new integrity relations: updates the set of defined integrity relations.

Defining new mayFlow permissions: updates the set of defined mayFlow permissions.

B.2 Restricted augmented state space

In the restricted augmented state space SS>(s>), the following additional transitions are also
possible:

Relabel > group label If there is a group label 〈>, G〉 and a relabel rule Relabel(G, G′) = g
with group g nonempty, then there is a successor state that has both group objects with label
〈>, G〉 and 〈>, G′〉.

For transitions that require administrative approval of some member secretary group (i.e., transi-
tions which add mayFlows or integrity relations above), the membership secretary group is con-
sidered nonempty if there is a group label of the form 〈>, G〉 for any tag G in the membership
secretary’s group pattern.

22

Preliminary version – January 28, 2005 – 17:22


