
Application Security Support in the Operating System
Kernel

Manigandan Radhakrishnan
University of Illinois at Chicago
851 S. Morgan Street, M/C 152

Room 1120 SEO
Chicago IL 60607-7053

mradhakr@cs.uic.edu

Jon A. Solworth
University of Illinois at Chicago
851 S. Morgan Street, M/C 152

Room 1120 SEO
Chicago IL 60607-7053

solworth@cs.uic.edu

ABSTRACT
Application security is typically coded in the application.
In kernelSec, we are investigating mechanisms to implement
application security in an operating system kernel. The
mechanisms are oriented towards providing authorization
properties, and this goal drives the design of permissions
and protection mechanisms.

The resulting system is dynamic, allowing the set of per-
missions for a program to evolve during program execution.
This reduces the need for users and applications to be aware
of protection mechanism, since the protection mechanism
provides the user with more freedom in how they do things.
We explore these properties through a number of examples.

KernelSec also supports a group (role) mechanism which can
define constrained groups enabling groups which only grow,
only shrink, are constant, are mutually exclusive with other
groups, and which allow inheritance. Moreover groups are
used to regulate group membership and allow group admin-
istration by non-privileged users.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Ac-
cess Controls, Information Flow Controls

General Terms
Security, Operating Systems

Keywords
Authorization, Authorization Properties, Access Controls,
Information Flow, Separation of Duty

1. INTRODUCTION
Operating Systems (OSes) play a crucial role in providing
system security since they are, by necessity, part of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ASIACCS‘06, March 21–24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003...$5.00.

Trusted Computing Base (TCB) [21]. The OS controls a
process’s interaction with the outside world; in order for a
process to affect anything outside its private address space it
must request the operating system to perform an operation
on its behalf. Thus, the OS’s authorization system allows or
denies each operation requested by a process, thereby medi-
ating the interaction. In general, authorization decisions are
based upon the user who invoked the process (and on whose
behalf it is assumed to be running), the program that it is
executing, and the history of the process. Operating sys-
tems provide “least privilege” [22] via their authorization
system, so that the processes have sufficient permissions to
perform only needed functions.

In spite of these advantages, much of authorization today
is provided in the applications. Many applications contain
significant amount of code and documentation and require
configuration to specify what the application is allowed to
do; further complexity arises due to inconsistent specifica-
tions across applications. Many applications provide no se-
curity code and yet may pose dangers both to the user that
executes them and to the system on which they run. In any
event, the protections in the application can be bypassed by
buffer overflow attacks, rendered ineffective by incorrect im-
plementation, or simply misunderstood. Because the appli-
cation base is extremely large and rapidly changing, spread-
ing authorization across the application base is antithetical
to shrinking and validating the TCB.

But even if it were possible to overcome the above difficul-
ties, the composition of two secure applications is not neces-
sarily secure, and hence application-by-application configu-
ration is insufficient for systems with multiple applications.

By providing effective authorization at the operating system
level, system-wide specification is achieved; thus composi-
tional issues do not come into play. In addition, analytical
tools can be used to determine what the security configu-
ration does. Analytical tools are particularly important for
security issues as a system may appear to be correct un-
der normal use while its flaws become apparent only under
attack. In authorization they are paramount, since each
organization determines—and therefore needs to verify—its
own authorization policy. (Even the smallest organization
must tradeoff functionality vs. protection when deciding its
system configuration).

Of course, application correctness—that the program does
the right thing in the absence of security concerns—remains
a crucial security concern. However, effective authorization
limits what each application can do, rendering it less dan-
gerous if successfully attacked (eg. via buffer overflow), pre-
venting certain classes of attack, and enabling the identifica-
tion of those applications whose correctness has the greatest
security impact and thus requires the greatest scrutiny.

Structurally the authorization system is implemented at the
topmost layer of the operating system. Hence, it is in prin-
ciple possible to change an authorization system without
changing other interfaces to the operating system. For ex-
ample, CMW [3], SELinux [27], TrustedBSD [35] have been
implemented on top of existing OSes.

Despite the substantial and inherent advantages of OS-based
authorization, application-based authorization proliferate.
OS-based authorization systems either lack the expressive-
ness to meet the varied authorization requirements of appli-
cations or are too complex.

The expressiveness can be described by the type of autho-
rization properties that can be enforced by the authorization
system. Traditionally, OS’s provide Discretionary Access
Controls (DACs) in which object-based protections can be
specified by the “owner” of the object. Mandatory Access
Controls (MACs)—which is used here to mean the access
controls imposed by the organization (rather than the more
narrowly defined lattice based access controls)—can pro-
vide system-wide protection, for example information flow,
separation-of-duty, and group (or role) management. To
supplant application-based authorization, the OS authoriza-
tion system must be sufficiently expressive to provide the
needed MAC protections.

The complexity of an authorization system can be examined
based on the impact it has on three different classes of in-
dividuals. They are the system administrators (who specify
the policy of a system), the users, and the applications (or
their developers).

System administrators configure the system security, which
necessitates that they understand the requirements of the
applications—in general, each application will need differ-
ent privileges—as well as specify and understand the au-
thorization configuration. Of course, in general, the more
expressive the system the more difficult it is to configure,
but it is desirable to reduce the complexity for a given level
of expressiveness.

Authorization systems restrict not only who can do a cer-
tain task but also how they must be done. Users must un-
derstand what is required of them (w.r.t the authorization
system) to perform desired tasks. For some types of security
policies like Multi-Level Security (MLS), it is both necessary
and appropriate to indoctrinate users in the security policy.
To reduce complexity, it is desirable to minimize the aware-
ness of the authorization policies expected of the user. In
kernelSec, this security awareness is reduced by having the
permissions associated with a process change based on ap-
plication actions. This ensures least privilege by minimizing
the permissions associated with a process at any time, while

maintaining flexibility as application actions can implicitly
cause permissions to be acquired (and released).

Applications (and hence their developers) interact with the
authorization system in two ways (1) when they request any
operation and (2) when they try to change the authoriza-
tion state. The impact the authorization system has on (1)
is minimal because requests by the application may be de-
nied for a variety of reasons (including lack of authorization)
and need to be resilient against them. In (2), the applica-
tions (and the developer) need to be aware of the authoriza-
tion system, and sometimes the exact authorization config-
uration, to make these changes. In kernelSec, the applica-
tion’s explicit interactions with the authorization system is
reduced by incorporating mechanisms that change the per-
manent authorization state into the authorization configura-
tion. Thus the authorization state changes can be triggered
implicitly by application operations, eliminating the need
for the developer to explicitly code them in the program.

In this paper, we describe how kernelSec supports applica-
tion security, provides support for high level authorization
properties such as dynamic separation of duty, dynamic in-
formation flow, and group management. In particular, the
kernelSec’s group mechanism provides some administrative
controls at the operating system level. This is the first OS
implementation that we are aware of which provides this
combination of general purpose and dynamic facilities.

The remainder of this paper is organized as follows. Sec-
tion 2 highlights the key features in kernelSec while Sec-
tion 3 describes the design in detail. Section 4 describes the
expressiveness of the protections that can be constructed in
kernelSec, using a series of examples. Section 5 describes
the current state of the kernelSec implementation, includ-
ing some performance numbers. Section 6 describes the
overview of how kernelSec addresses the expressiveness vs.
complexity tradeoffs discussed above. In Section 7 we de-
scribe related work and finally in Section 8 we conclude.

2. KERNELSEC: OVERVIEW
KernelSec can be viewed as a generalization of Type En-
forcement (TE) [5, 20, 1, 27, 35] which in turn is based on
the access matrix [17]. In TE, each object has a single label
which partitions the objects by protection type. Each pro-
cess executes in a domain; the domain defines for each label
the permissions which a process executing in that domain
has on objects of that type. Transitions between domains
occur when changing the executable of a process (via the
exec operation) which has a similar purpose to setuid-bit
in Unix [8].

TE is an attractive base, since it can control information
flow, implement static separation of duty, and associates
permissions with an executable (domain) as well as user.
But domains are entered only when exec’ing a new program.
Hence, the user must be aware of which program (domain)
will have suitable permissions for performing the task. For
some applications, where the program is tightly tied to the
data (as in Clark-Wilson [9]) this is not a problem. But
many applications use general purpose programs, such as an
editor, and hence a user may be working in a domain and
be unable to complete her work, since a domain transition

(requiring an exec) would replace the entire user state of the
process. At the least, this would require the application to
save the state in the filesystem, the user to exit the current
application and start up one with sufficient privileges, and
for that application to load its state from the saved file.
In addition, this requires both user knowledge as well as
application programming to save and restore state.

In contrast, kernelSec is much more dynamic as it allows a
process’s permissions to change as the result of accesses it
makes. We next highlight the key attributes of kernelSec
relative to TE:

2.1 Dynamic (run-time) domain transitions
Dynamic domain transitions allow the permissions associ-
ated with the process to change based on the operations
performed by the process. For example, after reading a
highly sensitive file, the process may not be able to write
a publicly readable file.

In systems which do not have dynamic transitions, either (1)
the needed process permissions must be chosen in advance
of the accesses performed (eg. between one which can read
a highly sensitive file and one which can not) or (2) least
privilege must be violated and the application itself must
enforce authorization. (1) requires the users to be cognizant
of the authorization system while (2) results in the OS being
too weak to enforce the necessary application authorization.

2.2 Active transitions
Active transitions couple changes in a process’s permissions
with changes to the permanent authorization state. For ex-
ample, in Dynamic Separation of Duty (DSoD) when a user
performs a step, completion of the step and the fact that
she performed it needs to be recorded. In kernelSec, the ac-
tive transitions allow the authorization system to implicitly
track which user performed the operation. Of course, the
authorization configuration must specify when this tracking
is to be done.

Since active transitions are part of the authorization system,
the application need not be aware of the exact constraints of
the authorization configuration (and application code is not
needed to make these changes). This enables state invariants
to be verified independent of the application code. As far
as we know, ours is the first system that implements active
transitions.

2.3 Group management
Group management uses the protection system itself to de-
termine how group membership changes over time. The
advantages of our group mechanism are that any user can
create a new group; any group of users can be defined to
regulate the membership of the group; and the permissions
can be defined to restrict future group membership.

2.4 Reducing complexity
Least privilege combined with dynamic and active transi-
tions can result in the need to produce a large number of
kernel-level entities. Manually creating a new authorization
configuration or modifying an existing authorization con-
figuration could be tedious. By generating these entities

from a higher level specification, much of the tedium can be
avoided; moreover, the higher level can be analyzed for the
protections provided, rather than at the kernel level. We
shall return to this subject in Section 6.

3. KERNELSEC COMPONENTS
The major components of the KernelSec system are: (1) the
users, which represent humans; (2) the labels, which are used
to define an object’s permissions; (3) the privileges, which
are the permissions that can be used to determine accesses
to objects; (4) the groups which are the basis of organiz-
ing users and assigning permissions, and are organized into
“group sets”; and (5) the Security Cards which bind the
privileges to a process.

3.1 Labels
Each object in kernelSec has a single label which (in con-
junction with Security Cards) completely determines its pro-
tection class—that is the set of operations that can be per-
formed on it and the group of users authorized to perform
each of them. Each kernelSec label is a pair 〈p, t〉 where p is
called the parameter, and t the tag. The tag determines the
label type. The parameter varies based on label type and
is used to encode additional information about the label (as
shown below). KernelSec has group labels, DAC labels, and
MAC labels as follows:

label type group MAC DAC
label form 〈U, Tg〉 〈G, Tn〉 〈U, Td〉
parameter type user ID group set ID user ID

The ordinary objects, which are the traditional objects of the
operating system, are the DAC and MAC objects. Due to
space limitations, we will not discuss DAC objects further.
An object with a group label, can only be created during
group creation or when adding a new user (defined in 3.2)—
its sole purpose is in determining group membership.

An arbitrary number of labels can be minted in kernelSec
and permissions are specified on a per label basis.

3.1.1 Notation
The following notation is used: ‘∗’ matches any value; ‘∗u’
refers to the user on whose behalf the process is executing;
and ‘∗g’ refers to the group set ID of the current MAC label
(if any). Moreover, if a rule specifies more than one label,
then a ‘.’ in a component of the second label means that the
component must have the same value as the corresponding
component of the first label. For example, a user map rule
〈∗u, G〉 → 〈., G′〉 means that group object for any user U in
the base group with tag G gets mapped to a group object
for U with tag G′ in the new group set.

3.2 Groups
KernelSec groups are a means of organizing sets of users.
But unlike traditional systems, kernelSec groups are main-
tained by the same mechanisms providing ordinary object
protection. The kernelSec group mechanism is based on the
abstract mechanism defined in [30]. We include a brief (and
somewhat simplified) description here so that the paper is

self-contained and also because the kernelSec groups dif-
fer in some respects from their abstract counterparts. The
advantages of this group mechanism are that any user can
create a group; any group of users can be defined to control
the membership of the group; and the permissions can be
defined to restrict group membership.

Each group in kernelSec is a member of one group set, which
is a collection of related groups. The group set contains a
collection of group objects—that is, objects having group
labels—and each group object in a group set has a unique
user ID as its parameter. Hence a user appears at most once
in a group set. Group objects are used to determine group
membership; relabels are used to change group membership.

Each group set has a template which defines how users, or
more precisely group objects, are added to the group set and
the mapping between group tags and groups of the group set.
The group set template has the following components:

group definition: A template’s group tags are unique to
that template. The group definition specifies for each
such group tag Tg, a rule of the form: Tg → {g0, g1, . . . , gn}
which means if a group object has label 〈U, Tg〉, then
U is a member of each of the groups g0, g1, . . . gn.

new user: specifies a tag Tg. When a new user Unew is
added to the system, a group object is created in the
group set with label 〈Unew, Tg〉.

initialization: Defines how the groups are populated with
users when the group set is created.

user base: An existing group set from which the ini-
tial users are drawn.

user map rules of the form 〈U , T 〉 →
˙
., T ′

g

¸
: Where

U can either be a specific user or “*” matching
any user; T can either be a specific tag or “*”
matching any tag. For each group object in the
base group set matching the left hand side of a
user map rule, a group object is created in the
group set with the same user and tag T ′

g.

Relabeling a group object, i.e. changing the tag on the group
label, removes the user represented by that group object
from zero or more groups and adds her to zero or more
groups, all within the same group set. Relabel permissions
are associated with Security Cards, and collectively the re-
label permissions determine how group membership can be
managed.

The template can be used to create multiple independent
group sets, all of the same form and therefore associated
with the same group set template ID. To create a new group
set, its name and template ID must be specified. Although
a group is specified by a group set name and a group name,
for simplicity in this paper we shall omit the group set name.

KernelSec group sets implement many of the properties of
RBAC [24] including inheritance, mutual exclusion, restric-
tions on user-role assignment, and administrative control
over who performs user-role assignment.

Name All User Template

Groups User → {allUser}
New User User

Example 1: All
users. The group
set of all users con-
tains a single group
and, since it is created before any users are added, does not
have an initialization.

Example 2: Users grouped by company. In the group
set template to the right, users are either unassigned (with
tag Industry) or assigned to a particular company. All users
in the system are part of this group.

Name Industry Template

Groups
Industry → {industryGrp}
Company1 → {company1Grp} . . .
CompanyN → {companyNGrp}

New User Industry
User Base AllUsers
User Map 〈∗, ∗〉 → 〈., Industry〉

3.3 Privileges
A privilege is a pair 〈permission, label〉, where permission
corresponds to the operation (such as read, write, etc) that
can be performed on the object with label label. Hence the
privileges that a process has determines the set of allowed
operations for that process.

KernelSec supports five types of privileges on ordinary ob-
jects: For files, these privileges are read, create, write, exe-
cute, and relabel. For directories, these privileges are search,
insert, delete, traverse, and relabel.

Name File Directory Specification
read read search r∗〈t〉
write write delete w∗〈t〉
execute execute traverse x∗〈t〉
create create insert cg〈t〉
relabel relabel relabel rl∗〈t → t′〉

Table 1: Files and directory privileges

Table 1 shows the kernelSec privileges for ordinary objects.
All of the privileges are defined in terms of their label’s
tag, denoted by t or t′. For read, write, and execute the
permission (r,w or x) and a tag t are specified. For create,
the permission (c), a group set template ID, g, and tag are
specified. If the group set template ID is non-zero, then
when an object is created with that tag, a group set is also
created and the new group set’s ID becomes the parameter of
the object’s MAC label. Finally, a relabel privilege specifies
two labels, and can be used to change the tag on a label
from t to t′.

The only privilege on group objects is a relabel of the form

rlP
˙
t → t′

¸
where P can either be a “∗” matching any user’s group ob-
ject or “∗u” matching only the group object (if any) of the
user on whose behalf the process is executing.

We note that SELinux has a mechanism called type change

which allows relabels in a domain from any of a set of source

labels to any of a set of destination labels, thus defining a
single many-to-many relabel map. KernelSec’s relabel per-
missions are more detailed, allowing each Security Card to
specify a set of source-destination label pairs, thus defining
an arbitrary directed graph of relabels. The effect is that a
single Security Card can specify an arbitrary number of rela-
bel permissions while in SELinux, multiple domains would,
in general, be required.

3.4 Security Cards
At any given time, each process has a single Security Card
which determines the process’s privileges. A Security Card
transition, changing the current Security Card, may be al-
lowed if (a) the current Security Card has insufficient priv-
ileges to perform a requested operation, (b) there is a suc-
cessor to the current Security Card containing the missing
privilege and (c) the process’s user is a member of one of
the groups in the successor Security Card. (See the secu-
rity method below for complete details). Each user, in the
system, has an initial Security Card and every new (login)
session for that user starts with her initial Security Card.

The components of a Security Card are:

Groups: The groups of users whose processes can use this
Security Card.

Privileges: The list of privileges the process has, which are
each of the form described in Section 3.31.

Security Method: The security method is invoked when
a process attempts to perform an operation for which
the current Security Card does not have sufficient priv-
ileges. When invoked, the security method can both
perform actions (to record changes to the authoriza-
tion state) and (optionally) switch Security Cards. These
transitions are called active transitions as they can
perform changes to the authorization state as part of
the transition.

The security method is composed of a series of pairs.
Each pair consists of match section—which describes a
missing privilege—and an action section—which con-
tains a sequence of actions to be performed atomically.
The match section describes a list of one or more priv-
ileges, using the same form of privilege specification
as in the privileges section of the Security Card (see
above). Each action section consist of: A set of zero or
more relabels (group relabel for group objects and
ordinary relabel for MAC objects) and ultimately
either

• a switchto (which changes the Security Card as-
sociated with the process) or

• a usePrivilege (which allows the operation to
proceed without switching Security Cards).

1 In addition, the negation of that form, indicated by a
preceding “!” is allowed, but is not used in any of our ex-
amples here. The first privilege that matches applies. The
ordering and negative permissions provide a mechanism for
differencing—that is, all those that match a privilege except
those that match a negated predecessor of the same privi-
lege.

The set of actions, specified from the point of the secu-
rity method invocation until the last action for a given
matched privilege, are performed atomically—that is,
either they must all succeed and the process is allowed
to perform the operation or none can and the opera-
tion fails.

Example 3: Simple Security Card which allows the pro-
cess to read any ordinary object whose tag is Stuff. If a
user tries to read or write an ordinary object with tag Z,
it will switch the Security Card to Zcard (we presume that
Zcard has sufficient privileges, if not the operation will fail
and the Security Card will not be switched). Finally, if any
other privileges are needed the operation will fail.

Name Simple card

Groups allUserGroup
Privilege(s) r∗〈Stuff〉
Security r∗〈Z〉, w∗〈Z〉:
Method switchTo(Zcard);

3.5 KernelSec operations affecting the autho-
rization state

The new OS operations which modify the kernelSec autho-
rization state are:

group relabel(gs, u, t) changes the group tag to t on a
user u’s group object in group set gs, thereby affecting
the group memberships for that user.

ordinary relabel(o,t) changes the MAC tag to t on a
MAC object o.

create group set(t) creates a new group set using an ex-
isting group set template t, it returns the group set ID
of the newly created group.

4. EXPRESSIVENESS
In this section, kernelSec expressiveness is explored through
the following series of examples:

System Administrators classifies users as either system
administrators or ordinary users.

Chinese Wall implements the classic Chinese Wall protec-
tion model.

Dynamic Information Flow describes how a process changes
the level of created objects as a result of its access his-
tory.

Dynamic Separation of Duty to implement the classic
purchase payable workflow.

We note that static versions of some of these mechanisms
can be implemented in TE, notably, Chinese Wall and Infor-
mation Flow. However, changes to the authorization state
(configuration) must be made by trusted system adminis-
trator, and are outside the scope of TE. Hence, TE doesn’t
implement administrative controls which is needed to imple-
ment system administrators example.

Name OrdinaryAndSysAdmins Template

Groups

sysAdmin → {sysAdmin}
limbo → {limbo, sysAdmin}
ordinary → {ordinary, limbo,

sysAdmin}
User Base User base group set name
User Map 〈∗, ∗〉 → 〈., sysAdmin〉
New User ordinary

Figure 1: Group set template example.

Name SysAdmin card

Groups sysAdmin

Privilege(s)
rl∗〈ordinary → sysAdmin〉,
rl∗〈limbo → sysAdmin〉,
rl∗〈limbo → ordinary〉

Security Method rl∗〈sysAdmin → limbo〉:
switchTo(LimboCard);

Name Limbo card

Groups limbo

Privilege(s)
rl∗〈sysAdmin → limbo〉,
rl∗u〈limbo → sysAdmin〉

Security Method rl∗〈∗ → ∗〉:
switchTo(SysAdminCard);

Figure 2: Security Cards for SysAdmin and Limbo.

4.1 System Administrators
Our first example primarily illustrates groups. The group
template is shown in Figure 1 and the Security Card is shown
in Figure 2. Its goal is to separate the users into two cate-
gories, system administrators and ordinary users. New users
are added as ordinary users, and then may be relabeled to
be system administrators. Similarly, system administrators
can be relabeled to be ordinary users.

However, we wish to safeguard against accidents. For ex-
ample, the sole system administrator becoming an ordinary
user (resulting in a system which cannot be administered)
or an error which causes a system administrator to block a
system administrator from using the system. Hence, the de-
moting of a system administrator to an ordinary user takes
place in two steps: the first is a move to limbo which is
then followed by a move to ordinary. Only a sysAdmin
can move a user from limbo to ordinary. Hence, if a sole
sysAdmin changes her status to limbo, she cannot be made
into an ordinary user (as there are no sysAdmins left to do
the relabel), but she may relabel herself back to sysAdmin
using the limbo Security Card.

4.2 Chinese Wall
Chinese Wall is a security model for investment banking
and other industries which hold confidential information on
clients [6]. Chinese Wall allows an investment bank to hold
information on competing companies—those within the same
industry—but prevent any individual from having informa-
tion on two competing companies. Hence, Chinese Wall en-
sures that each user may access at most one company in
each industry.

In Example 2, the groups for a particular industry within

Name Industry card

Groups All Users

Privilege(s)

rl∗u〈Industry → Company1〉,
rl∗u〈Industry → Company2〉,
. . .
rl∗u〈Industry → CompanyN〉

Security r∗〈Company1〉, w∗〈Company1〉:
Method group relabel(*g, *u, Company1),

switchTo(Company1 Card);
. . .
r∗〈CompanyN〉, w∗〈CompanyN〉:

group relabel(*g, *u, CompanyN),
switchTo(CompanyN Card);

Name CompanyI card

Groups CompanyIGrp

Privilege(s)
r∗〈CompanyI〉, c∗〈CompanyI〉,
w∗〈CompanyI〉

Security Method

Figure 3: Security Card for the industry and com-
panyI.

Chinese Wall were shown. The Security Cards, discussed
next, will ensure the correct temporal (i.e. dynamic) prop-
erties.

There are two Security Cards to implement Chinese Wall
as shown in Figure 3. The first is an industry card. The
industry card does not have the privilege to read or write
any object. Hence, if an attempt is made to access a com-
pany’s file, the security method is executed, which attempts
to relabel the user’s group object tag to that of the com-
pany accessed. This succeeds only if the user has either
already accessed files of that company (the group object has
the company tag) or the user hasn’t accessed any company.
Also, since the Security Cards only allow relabels from in-
dustry to company groups, each user can select a company
in that industry at most once. If the relabel is successful, it
is followed by a switch to that company’s card, which has
the necessary privileges. The CompanyI Card shown in the
figure is an example of a typical company card.

One of the interesting parts of this scheme is how flexible
the implementation is. The solution presented has implicit
selection of companies as a side effect of performing reads.
Alternatively, an explicit relabel can be required before suc-
cessfully invoking the security method to switch to the com-
pany’s Security Card.

4.3 Information flow
Controlling information flow is a fundamental problem in
computer systems as it directly affects confidentiality [2] and
integrity [4]. It is also effective in controlling malware, as it
can prevent malware propagation.

We present a mechanism which can implement lattice-based
access controls [23]; like TE it is not described with a lattice
and it directly allows downgrades2. Hence it can be used

2 We note that MilSec systems also, of necessity allow down-
grades but this mechanism is outside of the lattice-based de-
scription, making it, we believe, cumbersome for non-MilSec

Name Base card

Groups baseGroup

Privilege(s)
r∗〈base〉,
w∗〈base〉

Security r∗〈Confidential〉, w∗〈Confidential〉:
Method switchTo(Confidential);

Name Confidential card

Groups confidentialGroup

Privilege(s)
r∗〈base〉, r∗〈confidential〉,
w∗〈confidential〉

Security
Method

Figure 4: Dynamically limiting information flow

to prevent information from being copied into objects which
might be read by more than the original group of users or
to prevent information flowing in from unvetted sources and
thus contaminating high quality information.

In Figure 4 the Security Cards are shown for two levels at
which the process can operate. The process starts out with
a Base Card and as long as it only accesses objects with
label base, the Security Card doesn’t change. However, if a
confidential object is accessed, then the security method
is invoked which if the user is a member of the Confidential
group, switches to the Confidential card after which base
objects can no longer be written.

4.4 Dynamic Separation-of-Duty
Consider a task consisting of multiple steps. Separation-of-
Duty (SoD) requires that different steps be performed by
different individuals to prevent fraud or malfeasance. One
form of this rule is Static SoD (SSoD), in which the users
are divided into disjoint groups and different steps are per-
formed by members of different groups. SSoD is easy to
implement in almost all operating systems. On the other
hand, in Dynamic SoD (DSoD) individuals are not a priori
partitioned into groups, yet a given individual is prevented
from performing more than one step in a task: DSoD is more
flexible but more difficult to implement. In fact, the only
other kernel-based project that implements DSoD, of which
we are aware, is DTAC [32]. Our use of groups is similar
to Crampton’s blacklist sets [10] but is built upon a general
purpose group mechanism.

Name PO Template

Groups

IssuingClerk → {Issuer}
ShippingClerk → {PkgSigner}
EndUser → {User}
PayablesClerk → {Payer}
None → {None}

User Base User base group set name
User Map 〈∗, ∗〉 → 〈., None〉
New User None

Figure 5: Groupset template for dynamic SoD

We consider a DSoD example of purchase orders. Its pur-
pose is to make it harder for a clerk to create a phony sup-

applications

plier to bilk his employer. The steps are: (1) create: the
creation of a purchase order by a Purchase Clerk; (2) re-
ceiveItem: the receipt of the item by a Clerk in the Ship-
ping and Receive department; (3) endUserApproval: the
receipt of the item by the end user and approval upon in-
spection; and (4) payment: the payment for the item by
an Accounts Clerk.

For each Purchase Order (PO), the configuration has a MAC
PO object, the parameter of this object’s label specifies a
group set created for that PO and used to track which clerk
is performing each step. Figure 5 shows the group set tem-
plate PO Template used to create the group set. The tag
part of the PO Object’s label indicates the current state
of the PO, which is one of IssuedPO (the PO was issued),
RcvdShipping (received by the Shipping dept.), RcvdEndUser
(received by the ultimate user), and Paid. There are 4
groups of interest, one for each step of the task. For space
reasons, in Figure 6, we only show the Security Card for the
ShippingClerk, who receives the package.

For example, assume PO9834 is a PO Object for an item
which has just been received on the shipping dock; To indi-
cate the package’s receipt, the clerk’s process executes:

ordinary relabel(‘‘PO9834’’, RcvdShipping);

The purpose of this call is to change the tag part of the
label on the PO object named “PO9834”, to RcvdShipping;
for the receive to be valid, a purchase order must have been
issued for the object (IssuedPO) and the clerk must not have
performed a previous step with respect to “PO9834”. Since
the Security Card does not have sufficient permissions to do
the relabel of the PO object, it enters the security method
in which

• the group relabel succeeds only if the clerk has not
performed any operation in the sequence (and there-
fore his group object tag is None) and

• the usePrivilege succeeds only if the current tag of
the PO object is IssuedPO.

Note that the restrictions are relative to a given purchase
order, so that the same clerk can perform any (single) step
on any other purchase order.

Name Shipping Clerk’s card

Groups Anyone
Privilege(s) rl∗u〈None → PkgSigner〉

Security
Method

rl∗g〈IssuedPO → RcvdShipping〉:
group relabel(*g, *u, PkgSigner);
usePrivilege ();

Figure 6: Security Card for the step where the ship-
ping clerk records the receipt of the item

Given this Security Card, it is impossible to change the
purchase order’s tag without the clerk meeting DSoD con-
straints. The subsequent steps in the approval sequence have

similar Security Cards to the one shown for the receiveShip-
ping step. Note that the atomicity of security method in-
vocation and active transitions are essential to implement
dynamic separation of duty’s paired operations.

4.5 Discussion
We have presented familiar authorization models as they
are easier to understand and make better use of our limited
space. However, it is worth highlighting some issues where
we differ from other authorization systems:

• The group mechanism is very flexible, providing fine
grained control over who can regulate group member-
ship, the relationship between groups (partitioning or
hierarchy) and the successor groups that a user can
belong to, given the current group.

• Chinese Wall is a simple combination of group mem-
bership and information flow properties. Many vari-
ants of Chinese Wall can be encoded.

• Information flow type problems can be written allow-
ing

– floating labels: for example, allowing an object
labeled Confidential to be automatically relabeled
to Secret when writing it after reading a Secret
object. (The degree of floating, if any, can also
be completely controlled).

– floating process level: the process effectively works
at a higher level via a switch in Security Cards.

– Downgrade can be allowed via relabel, transitiv-
ity is not required.

• Dynamic separation of duty

– Relabels ensure that all users are, for example,
agreeing to the same purchase order since no user
has write privileges.

– Relabels of the MAC tags allow arbitrarily com-
plex DSoD problems to be specified including those
with loops or alternative outcomes.

• all (overt) channels are mediated in kernelSec, includ-
ing pipes, message queues, and shared memory. We
have not tried to prevent covert channels [13, 19, 18].
One reason is that covert channel prevention is expen-
sive in terms of validation and performance. But the
larger problem with covert channel analysis is its ef-
fectiveness, since it requires a unidirectional flow of in-
formation. This is possible only in MLS. We note that
covert channels can be eliminated with NRL pumps
[16] between systems running at a different level.

5. IMPLEMENTATION
We give just a brief description of the implementation here;
complete implementation details are intended to be pre-
sented as an OS-oriented paper. KernelSec is implemented
in Linux, and consists of two components:

kernelSecKernelModule a Linux kernel module, which
is dynamically loaded into the Linux kernel and im-
plements its protections primarily using the facilities
of Linux Security Modules (LSM) [37].

Operation kernelSec(µs)

verify privilege 4.59
switch to 30.7
relabel 1541

Table 2: Op Performance

Example Time (µs)

Information Flow 17
Chinese Wall 1345
Dynamic SoD 2822

Table 3: Example Performance

kernelSecD a user-space daemon which downloads the con-
figuration into the kernelSecKernelModule using
netlink, and is also responsible for the creation of new
group sets.

The kernelSecKernelModule is currently about 6500 lines
of C code, while kernelSecD is currently about 7300 lines
of C++ code. The current code implements all of the pro-
tections described in this paper.

Because kernel implementations affect all programs, it is im-
portant that kernel mechanisms have low overhead. Thus,
we present here a few microbenchmarks to measure the ker-
nelSec performance overheads.

We benchmarked three operations: (1) verify that a card has
the required privilege, (2) switch to a new Security Card,
and (3) relabel a group or ordinary object. Operations (2)
and (3) are done as part of the security method. These
benchmarks measured the elapsed time at the application
level; for the higher cost operations a context switch is per-
formed and other work is done while waiting for the opera-
tion to complete. Table 2 gives the time in microseconds for
a few operations; for the most common Unix operations, the
kernelSec percentage overhead is in the single digits. The
tests were carried out on a 2.8 GHz Pentium 4 machine (with
512 MB RAM) running Linux kernel version 2.6.10.

Figure 3 gives the elapse times for the examples discussed
in Section 4. For the cases of Information Flow and Chinese
Wall, the operation was a open() on a MAC object, which
involved just a switchTo in the former and a relabel and
switchTo in the latter. For the Dynamic SoD example, two
relabels were needed one a MAC relabel and the other a
group relabel.

The overheads are modest even in our unoptimized imple-
mentation. The one expensive operation is relabels, which
must be synchronously written to disk to avoid security
holes. Hence, the cost includes writing the object’s inode
(which contains the label) to the disk controller before re-
turning to the application, preventing protection from be-
ing bypassed even due to system crashes. (The CPU time
is much smaller, on the order of 30µs, so that useful work
can be performed while waiting for the write out to disk.)
However, we believe that group operations will be relatively
rare and hence the impact on overall program performance

even with a sync is very modest.

6. REDUCING COMPLEXITY
We now describe how the goals of expressiveness and re-
duced complexity are addressed in kernelSec.

6.1 Factoring
it may be tedious to manually create the Security Cards
because of (1) the number of Security Cards and (2) the
number of transitions between Security Cards. We are par-
ticularly concerned about what happens when the autho-
rization configuration is changed, for example, to allow a
new application.

Security Cards

Specification Layer

factoring

Analysis

Figure 7: Overall system design with high-
level specification which is (1) factored into ker-
nelSeclayer and (2) analyzed for security properties.

Hence, our security model has two levels: A high level autho-
rization specification such as RBAC [11, 24] or SPBAC [31]
and a kernel-based enforcement mechanism which imple-
ments these protections. The authorizations are described
at a high level and then factored into Security Cards. Al-
though a detailed discussion of the high level specification
and the algorithms for factoring are beyond the scope of
this paper, this separation enables the Security Cards to be
optimized for run-time efficiency; the specification level is
optimized for specifying and understanding the authoriza-
tions.

For example, an SPBAC specification layer is stateless, it
uses permissions to implement constraints. A process must
hold multiple permissions to perform certain operations; these
permissions can be viewed as simultaneously requiring dif-
ferent constraints to hold. In general, small changes in the
specification layer results in many more changes in the num-
ber of, and the transitions between, Security Cards. Hence,
the specification level is more stable and the changes more
incremental.

In addition to reducing the authorization specification, it
enables Security Cards to be viewed as pure mechanism.
Hence, we are not concerned here with analyzing whether
Security Cards are well formed with respect to implementing
given protections—only that they are sufficiently expressive
to implement them.

6.2 Authorization Properties
In order to obtain least privilege, systems have historically
partitioned privileges. For example, SELinux has approx-

imately 80 privileges associated with ordinary (non-root)
permissions. We have significantly reduced the number of
privileges because we (1) do not consider covert channels
and (2) by organizing privileges around authorization prop-
erties.

An authorization property characterizes allowed executions,
for example information flow confidentiality, separation of
duty, or restricting the update of certain objects to an exe-
cutable. Hence, each permissions is used to enforce some au-
thorization property and this provides a basis for determin-
ing what permissions are needed. An authorization property
approach provides not only a metric for choosing the gran-
ularity of permission, but also for ensuring that the permis-
sions defined are well suited for the security being enforced.

In the context of our broader authorization project, we have
been studying the design of authorization properties. One of
the issues has been how to combine administrative controls
with authorization properties: we have described this for
the oldest of the authorization properties, information flow
confidentiality and integrity [31, 29]. Another type of au-
thorization property that we have been investigating is the
well formedness of dynamic separation of duty problems—
that is, they do not get stuck because they run out of users
who are eligible to perform needed tasks [28].

7. RELATED WORK
One of the earliest MAC mechanisms in operating systems
are Lattices [36, 22, 2]. For example, LOMAC [12] has a spe-
cial purpose mechanism to enforce Biba integrity in which
the level of the process changes, which could be implemented
in kernelSec with a Security Card transition. Compart-
mented Mode Workstations (CMW) [3], which have both
current and maximum lattice labels for each object, can dy-
namically relabel the current object for increased flexibility.
But their dynamic semantics were hardwired, whereas ker-
nelSec’s are individually specifiable. While lattices are an
elegant formalism, they provide only limited forms of pro-
tection.

TE provides the ability to both require that certain autho-
rization properties hold, such as assured pipelines or overt
information flow, while enabling these properties to be selec-
tively violated when necessary, as for declassification opera-
tions. But TE’s domain transitions are very static, requiring
the domain to be chosen before performing the operations,
and hence requiring the user to understand the protection
configuration. Security Cards can be viewed as a general-
ization to TE. The kernelSec project further differs from
TE implementations in (1) our focus on more abstract ob-
jects such as our group structure and (2) the emphasis on
providing authorization properties.

Our groups provide a number of RBAC facilities [24] within
group sets including inheritance (the tags of one group are
a subset of those of another), mutual exclusion (the tags are
disjoint), and user-role management (the users who control
group membership). However, our groups differ from RBAC
roles both in the way they are constructed and administered.

Varadharajan and Allen investigated the requirements of im-
plementing Joint Action (including Separation of Duty) in

an Operating System [34].

A project which had similar goals to kernelSec is DTAC
which adds constraints to the system to provide a more dy-
namic TE [33, 32]. Their system relies heavily on explicit
constraints [14]. In contrast kernelSec uses permissions and
Security Card transitions as a type of implicit constraint.
As a result we believe kernelSec’s mechanisms are simpler,
more natural, and more efficient.

EROS is a capability-based system [25] which also supports
fine grain mechanisms. In EROS the focus is on provid-
ing least privileges while kernelSec is oriented at providing
authorization properties at a high level of abstraction, al-
though there is some support for mechanisms which enable,
for example, MilSec information flow rules [26].

For alternative approaches to provide functionality at the
OS kernel interface, see for example Jain and Sekar [15].

A complementary approach to ours is Privtrans which seeks
to automatically partition application code into privileged
and unprivileged components [7].

We believe that kernelSec is the first operating system pro-
tection model to be implemented which provides (1) struc-
tured groups, (2) support for dynamic separation of duty,
(3) support for flexible information flow, and (4) support
for a general relabel mechanism.

8. CONCLUSION
System-wide security cannot be provided at the application
level, and hence can only be provided in the operating sys-
tem. For an OS-based mechanism to provide the necessary
security, it should be sufficiently expressive to capture a va-
riety of security policies and yet not be overly complex.

To this effect, the kernelSec model is implemented at two
levels: the system specification level (level 1) supports DAC,
Mandatory Access Control (MAC), and administrative con-
trols and has decidable authorization properties. The en-
forcement engine (level 2), using Security Cards, provides
the run-time engine which implements the specified protec-
tions. This separation paves the way to have an efficient
mechanism and yet have a simplified means for encoding
specification.

We have described Security Cards, the filesystem permis-
sions supported, and kernelSec’s group mechanism. Security
Cards can be seen as a generalization of Type Enforcement
with the following differences: It supports arbitrary relabel
privileges; it has the ability to specify privileges as patterns;
and allow operations to be performed as part of the transi-
tion mechanism between Security Cards.

Key to the kernelSec enforcement engine is the group struc-
ture which, when combined with Security Cards, allows the
definition of group sets (collections of related groups), the
creation of group sets, and membership administration to
be unprivileged operations. Moreover, group sets allow new
users to be automatically added to the group set. Relabel
permissions constrain how group membership can change
and are a powerful mechanism.

These mechanisms substantially increase the dynamic prop-
erties of the systems, enabling unified DAC/MAC support,
dynamic separation-of-duty, dynamic information flow, and
the ability to provide rich variants of many protection schemes.
We have implemented kernelSec in the Linux Kernel using
Linux Security Modules.

KernelSec is effective in minimizing the awareness that users
and application developers need to have about the autho-
rization configuration. By allowing the permission to change
based on program actions (using Security Card transitions),
kernelSec is able to support least privilege without being
overly restrictive. By being able to encode changes to the
authorization state to be part of the authorization configu-
ration, the dependence on the application developer to in-
corporate the protection in the application can be greatly
reduced.

9. ACKNOWLEDGEMENTS
The authors would like to thank Damian Roqueiro for his
careful reading of an earlier draft of this paper as well as
Ashley Poole, Prof. V. N. Venkatakrishnan, Jorge Hernandez-
Herrero, Kevin Kahley, Mike Ter Louw, Hareesh Nagarajan,
and the anonymous referees for their comments.

10. REFERENCES
[1] L. Badger, D. F. Sterne, D. L. Sherman, K. M.

Walker, and S. A. Haghihat. A domain and type
enforcement UNIX prototype. In Proc. of the USENIX
Security Symposium, Salt Lake City, 1995.

[2] D. E. Bell and L. J. LaPadula. Secure computer
systems: Mathematical foundations and model.
Technical Report M74-244, Mitre Corporation,
Bedford MA, 1973.

[3] J. L. Berger, J. Picciotto, J. P. L. Woodward, and
P. T. Cummings. Compartmented mode workstation:
Prototype highlights. IEEE Transactions on Software
Engineering, 16(6):608–618, 1990. Special Section on
Security and Privacy.

[4] K. Biba. Integrity considerations for secure computer
systems. Technical Report TR-3153, MITRE Corp,
Bedford, MA, 1977.

[5] W. E. Boebert and R. Kain. A practical alternative to
hierarchical integrity policies. In 8th National
Computer Security Conference, pages 18–27, 1985.

[6] D. F. C. Brewer and M. J. Nash. The Chinese Wall
security policy. In Proc. IEEE Symp. Security and
Privacy, pages 206–214, 1989.

[7] D. Brumley and D. X. Song. Privtrans: Automatically
partitioning programs for privilege separation. In
USENIX Security Symposium, pages 57–72, 2004.

[8] H. Chen, D. Wagner, and D. Dean. Setuid
demystified. In Proc. of the USENIX Security
Symposium. USENIX, 2002.

[9] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security policies. In
Proc. IEEE Symp. Security and Privacy, pages
184–194, 1987.

[10] J. Crampton. Specifying and enforcing constraints in
role-based access control. In Proc. of ACM Symposium
on Access Control Models and Technologies
(SACMAT), pages 43–50. ACM Press, 2003.

[11] D. F. Ferraiolo and R. Kuhn. Role based access
control. In 15th National Computer Security
Conference, pages 554–563, Baltimore, MD, 1992.

[12] T. Fraser. LOMAC–low water-mark mandatory access
control for Linux. In Proc. of the USENIX Security
Symposium, Washington D.C., 1999.

[13] V. Gligor. A guide to understanding covert channel
analysis of trusted systems. Technical Report
NCSC-TG-030, National Computer Security Center,
Ft. George G. Meade, Maryland, U.S.A., Nov. 1993.
Approved for public release: distribution unlimited.

[14] T. Jaeger. On the increasing importance of
constraints. In Proc. of the ACM Workshop on
Role-Based Access Controls (RBAC), pages 33–42,
1999.

[15] K. Jain and R. Sekar. User-level infrastructure for
system call interposition: A platform for intrusion
detection and confinement. In NDSS, 2000.

[16] M. H. Kang, A. P. Moore, and I. S. Moskowitz. Design
and assurance strategy for the NRL pump. Computer,
31(4):56–64, 1998.

[17] B. Lampson. Protection. In Fifth Princeton
Symposium on Information Sciences and Systems,
1971.

[18] B. W. Lampson. A note on the confinement problem.
Communications of the ACM (CACM),
16(10):613–615, 1973.

[19] J. Millen. Twenty years of covert channel modeling
and analysis. In Proc. IEEE Symp. Security and
Privacy, pages 20–114, 1999.

[20] R. O’Brien and C. Rogers. Developing applications on
LOCK. In Proc. 14th NIST-NCSC National Computer
Security Conference, pages 147–156, 1991.

[21] D. of Defense. Trusted computer system evaluation
criteria. Technical Report DOD 5200.28–STD, U. S.
Department of Defense, 1985.

[22] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer system. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[23] R. S. Sandhu. Lattice-based access control models.
IEEE Computer, 26(11):9–19, 1993.

[24] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[25] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a
fast capability system. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles
(SOSP’99), pages 170–185, 1999.

[26] J. S. Shapiro and S. Weber. Verifying the EROS
confinement mechanism. In Proc. IEEE Symp.
Security and Privacy, pages 166–176, 2000.

[27] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a Linux security module. Report #01-043,
NAI Labs, Dec. 2001. Revised April 2002.

[28] J. A. Solworth. Approvability. In ACM Symposium on
InformAtion, Computer and Communications Security
(AsiaCCS’06), page to appear, Taipei, Taiwan, May
2006.

[29] J. A. Solworth and R. H. Sloan. Decidable
administrative controls based on security properties,
2004. Available at http:

//parsys.cs.uic.edu/~solworth/kernelSec.html.

[30] J. A. Solworth and R. H. Sloan. A layered design of
discretionary access controls with decidable
properties. In Proc. IEEE Symp. Security and
Privacy, pages 56–67, 2004.

[31] J. A. Solworth and R. H. Sloan. Security
property-based administrative controls. In Proc.
European Symp. Research in Computer Security
(ESORICS), volume 3139 of Lecture Notes in
Computer Science, pages 244–259. Springer, 2004.

[32] J. Tidswell and T. Jaeger. An access control model for
simplifying constraint expression. In Proc. ACM
Conference on Computer and Communications
Security (CCS), pages 154–163, 2000.

[33] J. F. Tidswell and T. Jaeger. Integrated constraints
and inheritance in DTAC. In Proc. of the ACM
Workshop on Role-Based Access Controls (RBAC),
pages 93–102, 2000.

[34] V. Varadharajan and P. Allen. Joint actions based
authorization schemes. Operating Systems Review,
30(3):32–45, 1996.

[35] R. Watson. TrustedBSD: Adding trusted operating
system features to FreeBSD. In USENIX Technical
Conference, Boston, MA, 2001.

[36] C. Weissman. Security controls in the ADEPT-50
time-sharing system. Proc. FJCC, AFIPS, 35, 1969.

[37] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
security support for the Linux Kernel. In Proc. of the
USENIX Security Symposium, San Francisco, Ca.,
2002.

http://parsys.cs.uic.edu/~solworth/kernelSec.html
http://parsys.cs.uic.edu/~solworth/kernelSec.html

	Introduction
	KernelSec: Overview
	Dynamic (run-time) domain transitions
	Active transitions
	Group management
	Reducing complexity

	KernelSec Components
	Labels
	Notation

	Groups
	Privileges
	Security Cards
	KernelSec operations affecting the authorization state

	Expressiveness
	System Administrators
	Chinese Wall
	Information flow
	Dynamic Separation-of-Duty
	Discussion

	Implementation
	Reducing Complexity
	Factoring
	Authorization Properties

	Related Work
	Conclusion
	Acknowledgements
	References

