
Approvability

Jon A. Solworth
University of Illinois at Chicago
851 S. Morgan Street, M/C 152

Room 1120 SEO
Chicago IL 60607-7053

solworth@cs.uic.edu

ABSTRACT
Consider a set of users who collectively perform a sequence
of actions to complete a task. Separation of duty constraints
hold when there are restrictions which are intended to re-
quire that not all actions are performed by the same user.

The approvability graph is introduced to describe the se-
quences of actions which correspond to one or more tasks.
The graph can represent multiple possible outcomes (dif-
ferent completions from the same starting point) as well as
allowing for repeated actions. Hence, the graph describes a
set of sequences, not necessarily finite, which define when a
task is complete.

The graph-based mechanism also describes separation of
duty constraints between different actions, ensuring that dif-
ferent actions are performed by different users. (It can also
require different actions to be performed by the same user.)

Algorithms are presented to analyze the number of users
needed to ensure that any such sequence can be completed,
even in the presence of loops or alternative outcomes. The
various properties that arise in approval sequences are then
explored to characterize well formed systems and to examine
their complexity. In particular, we show how to achieve
bounds on the number of users which must be members of
each role.

Determining the minimum number of users to complete a
dynamic separation of duty task is proven to be NP-Complete.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ASIACCS‘06, March 21–24, 2006, Taipei, Taiwan.
Copyright 2006 ACM 1-59593-272-0/06/0003...$5.00.

Keywords
Authorization, Authorization Properties, Separation of Duty

1. INTRODUCTION
Consider a task that consists of multiple actions, where each
action is performed by a single user. Separation of Duty
(SoD) constraints are intended to ensure that a single user
does not perform every action in a task. Specifying sepa-
ration of duty problems, in general, involves (1) specifying
the actions that are part of the task (since if actions could
be arbitrarily bypassed it would be impossible to enforce
separation of duty) and (2) the constraints between actions.

Separation of duty problems are important for several rea-
sons. First, they are reserved for the most sensitive tasks
and therefore are crucial to security. Second, they are by def-
inition too important for a single person to perform making
them unique among authorization issues. Third, they must
be described by specialized mechanisms. And fourth, they
are broadly used, for example in financial systems to con-
firm large transactions; in military applications such as to
control the launch of nuclear weapons; and in medicine for
second opinions before non-emergency surgery.

We will define an approval sequence (in Section 4.1) which
completes a task as a sequence of actions along with the
users who performed them. For example, an accounting
approval sequence might require the issuing of a purchase
order by a purchase clerk, the receipt at the loading dock
of the purchased item by a shipping clerk, the receipt by
the end user of the item, followed by the payment by an ac-
counts payable clerk. To an organization, it is a completed
approval sequence that denotes finished work, that is a com-
pleted task. In general, the approvability sequence is neither
fixed—for example, multiple revisions may be necessary—
nor is there a single possible outcome—for example, a loan
application may be approved or denied.

There are two major types of Separation of Duty (SoD)1:

Static SoD (SSoD): The individuals are partitioned into
groups or roles, and different roles may be assigned to
different actions of an approval sequence. SoD con-
straints ensure mutual exclusion between the roles2.

1Sandhu [25] attributes to [9] the static vs. dynamic SoD
terminology.
2Note that pairwise-disjoint roles are sufficient, but not

Dynamic SoD (DSoD): Dynamic SoD ensures that for a
given task, different actions are performed by different
individuals, even if both actions are governed by the
same role.

When there are SoD constraints, then by definition two or
more actions are required and the actions must be performed
by more than one individual. It reduces fraud for at least
two reasons. First, it is necessary for two or more individu-
als to fail to act in the interest of the organization, which has
an inherently lower probability than the failure of a single
individual. Second, collusion requires that one party pro-
poses fraud to another. The second party may report the
first party to authorities; alternatively, if the second party
does not report the first party he runs the risk that the first
party was testing him at the behest of authorities (and hence
the first party’s offer was not genuine). Therefore, it is not
safe for either party to cooperate or even discuss an offer of
collusion.

While SSoD is easy both to specify and to analyze, dynamic
SoD is neither. But DSoD is far more flexible. It enables
the protection to be tuned so that for the same number
of people, either more separation can be obtained or it is
easier to find someone who can perform an action (or some
combination of these two).

In other authorization mechanisms, it suffices to assign one
sufficiently trusted user to perform each action. Unfortu-
nately, this is insufficient for DSoD since even if a user is
highly trusted, she may not be able to perform a given ac-
tion because she has performed some other conflicting action
earlier: In this sense, DSoD actions consume users since, as
a consequence of performing an action a user is unable to
perform future actions to which she would otherwise be per-
mitted. Therefore, an organization’s approval sequence for
DSoD depends on both organizational size and structure. If
only n people are associated with an organization, then n
is the maximum number of users that can be involved in
a task. Smaller organizations will need to decide, for ex-
ample, between lesser SoD and having executives perform
actions which in a larger organization would be performed
by clerks. Hence, organizations must design and analyze
their own approvability sequences with the desired degrees
of SoD.

It is important to analyze the (maximum) number of users
needed to complete a task to ensure that tasks do not be-
come stuck and therefore unable to complete—a kind of de-
nial of service. The only paper which we are aware of that
analyzed completion of tasks is the seminal paper of Bertino,
Ferrari, and Atluri (BFA) [3]. BFA modeled a workflow as a
collection of actions, described constraints between actions
and a bound on the number of times an action could be
executed. Given this description, they developed an algo-
rithm which provides an exact solution of the assignment
of users to actions, if one exists. Unfortunately, if the ap-
proval sequence can have loops or alternative outcomes then
the number of times each action executes is unknown. BFA

necessary to obtain SoD. Consider the following se-
quence of groups of individuals a, b, c which exhibit SoD
[{a, b} , {b, c} , {c, a}] since at least two individuals must be
involved in approval.

suggested that, in this case, an estimate of the number of ac-
tions is used and, if exceeded, the algorithm could be rerun.
However, under such circumstances the algorithm could fail
to find a solution and a workflow could get stuck.

Our focus here is on determining sufficient conditions so that
a SoD task never gets stuck. In this paper, we

• introduce the approvability graph to model tasks. The
approvability graph can represent multiple possible com-
pletions (e.g., the purchase order was issued or was
cancelled), loops, and linear sequences as well as the
DSoD constraints between actions. It is the first model
of SoD which allows loops.

• show well-formed conditions on the approvability graph,
so that given a sufficient number of users per role, the
task cannot get stuck.

• show a polynomial-time algorithm to determine a suf-
ficient number of users per role. Note that the assign-
ment of users to roles varies with personnel changes;
the approvability graph (i.e., the workflow), on the
other hand, does not. Minimum cardinality per role
ensures that the tasks do not get stuck even as per-
sonnel change3.

• show that the analysis of even very simple DSoD prob-
lems is NP-Complete.

This last issue is especially interesting for two reasons: (1) it
indicates that runtime DSoD scheduling may be too expen-
sive and (2) it is a lower bound on the intrinsic complexity
of a SoD problem. The only other complexity analysis of
SoD we know of shows that the complexity of a particular
SSoD solution is NP-Complete [19]. Of course, showing the
problem has high complexity implies that any solution must
have high complexity.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work; Section 3 describes the ap-
provability graph and gives examples of its use examples;
Section 4 describes the analysis of these systems; and finally
we conclude.

2. RELATED WORK
SoD has a very long history, going back at least to Multics
in the computer security literature [23] (where it is called
separation of privilege). Saltzer and Schroeder attribute its
first use in computer systems to Needham in 1973. But its
use outside of computers is far older, going back thousands
of years. We shall not attempt to trace the non-computer
history here.

Lipner described a use of SSoD with respect to program de-
velopment so that those who installed software were separate
from those who developed it. Its purpose is to make it harder

3This assumes that same user constraints are not used or
can be overridden, for if an individual leaves the company
she is not longer available to perform future tasks.

for a programmer to insert surreptitious code [20]. Clark-
Wilson used it explicitly to counter fraud [5]. Both Clark-
Wilson and Lipner have their antecedents in non-computer
systems.

Sandhu developed an elegant notation for describing action
sequences [24]. The notation allowed for DSoD, and could
require two different actions to be performed by different
users or the same user. (Sandhu’s notation even allowed
weighted approvals: For example, a vice president could ap-
prove something that otherwise would require approvals by
two different supervisors.) However, other than weighted
approvals, each task consisted of a fixed sequence of actions.

Crampton has modeled SoD as a partially ordered set of
actions enabling parallel actions but requiring all actions to
be performed (that is, it supports neither alternation nor
loops) [7]. He describes a runtime implementation model
using blacklist sets to ensure that constraints are not vio-
lated [6]. Knorr and Weidner use Petri Nets to represent
SoD, but it is clear from their analysis that they did not
consider loops [17].

Hitchens and Varadharajan [13] describe a set-based lan-
guage called Tower for modeling RBAC that can describe
sequences of SSoD and DSoD, as well as several other types
of authorizations.

Nash and Poland [21] introduce object-based SoD in which
the separation is on an object-by-object basis. This is a
fine-grained instance of DSoD. Since the purpose of DSoD
is to increase flexibility while maintaining appropriate con-
straints, this fine-grained version is superior to coarser-grained
versions.

Karger describes an operating system implementation using
capabilities and lattices [16]. He describes the system both
in terms of its verification needs and user interface as being
extremely complex. Foley [11] describes SoD using lattices
and high water marks. The lattices used by both Foley
and Karger are more restricted than our approvability graph
since they must be acyclic.

Simon and Zurko presented a taxonomy of SoD and gave a
description of their specification [27]. The language appears
to be purely for policy specification, it does not seem to be
implementable.

Gligor, Gavrila, and Ferraiolo describe a formal definition
of various SoD policies, and show the relationship between
them [12]. They also investigated composition of SoD. Fur-
thermore, they note that SoD mechanisms have not been
successfully implemented in operating systems, which is one
of the goals for the model presented here. We present op-
erating system level mechanisms which can implement ap-
provability graphs in a second paper in this proceedings [22].

SoD has been extensively explored in the context of Role-
Based Access Controls (RBAC) [10, 26], including [9, 18].
Ahn and Sandhu used first-order predicate logic to describe
SoD [1]. DSoD is typically represented by permissions which
cannot be taken on by the same user within a session.

Joshi, Bertino, Shafiq and Ghafoor have examined how to
specify SoD in GTRBAC [15].

Li, Bizri, and Tripunitara (LBT) showed that verifying a
SSoD policy—that is, at least n people are required to com-
plete a task—using mutually exclusive rules is NP-Complete
[19]. Their complexity result is about a particular mecha-
nism to implement SoD, whereas the complexity result here
is inherent in SoD. As described in the introduction, DSoD
is fundamentally different from SSoD in that only DSoD
consumes users.

Jaeger and Tidswell [14, 28] used constraints and inheri-
tance in their Dynamically Typed Access Control model to
implement SoD.

Chinese Wall [2, 4] is a similar problem to SoD in that they
share a “different from” constraint. The Chinese Wall con-
straint, however, is on objects while the SoD constraint is
on people.

Vimercati, Paraboschi, and Samarati [8] describe the gen-
eral mechanisms necessary to support SoD in their survey
of access controls.

3. APPROVABILITY
In an approvability graph each action specifier—which spec-
ifies the type of an action such as receipt of item by end
user—is modeled as a directed edge and labeled with a role,
or group. Paths starting from initial nodes in the approv-
ability graph specify allowable sequences of actions and the
role that a user must assume, or be a member of, to per-
form an action. Each traversal of an action specifier edge in
the path corresponds to a unique action. The nodes of the
approvability graph summarize the state of the approval.

The approvability graph directly represents DSoD through
constraints on action specifiers. In addition, if the sets
of mutually exclusive roles—in which a user can never be
a member of multiple roles in a set—are known, the ap-
provability graph can also represent SSoD. Hence, SSoD is
represented by different roles associated with different ac-
tion specifiers; DSoD is represented by “different user” con-
straints between two edges and the roles associated with
these edges need not be the same.

Formally, an approvability graph system is a 6-tuple
〈V, E, Cd, Cs, L, R〉 where 〈V, E〉 is a directed graph called
the approvability graph and Cd and Cs are sets of pairs
of edges, L is a set of edges, and R : E → Role where Role is
a set of roles. We shall be informal and not distinguish be-
tween the approvability graph system and the approvability
graph it contains, calling them both approvability graphs.

The approvability graph contains the following types of nodes:

initial A starting point in the approval process.

final A completion of a task. Final nodes have no outgoing
edges.

intermediate Nodes which are neither initial nor final nodes.
Intermediate nodes have both incoming and outgoing
edges.

There can be multiple nodes of each type.

The edges E of the approvability graph correspond to action
specifiers. Each edge e is labeled with a role R(e) whose
members can perform the specified action. Without loss
of generality, we will assume that every edge and node is
reachable from some initial node.

Finally, constraints between action specifiers are used to rep-
resent SoD constraints. The constraints between two dis-
tinct edges (action specifiers) e0, e1 are of two forms, Cd

and Cs respectively:

different user meaning that the users who perform an ac-
tion specified by e0 must be disjoint from those who
perform an action specified by e1 (thus representing
DSoD) 4.

same user All of the actions specified must be performed
by the same user. Same user constraints must be be-
tween edges labeled with the same role.

In addition, there is a constraint for a single edge (L):

self-same user the actions corresponding to the action spec-
ifier are all performed by the same user.

Note that the same user and self-same user constraints in-
herently requires a particular user to perform some future
action. As this may affect the urgency with which such
tasks can be completed if the specified user is (temporar-
ily) unavailable, the same user constraint should be used
sparingly.

The following notation is used for approvability graphs: The
successors of a node v, Succ(v) are a set of nodes such that
if v′ ∈ Succ(v) there is an edge from v to v′. Succ∗(v) is
the transitive closure of Succ on v. Finally, I is the set of
initial nodes and F is the set of final nodes.

An approval sequence captures a traversal of the approval
graph starting with an initial node and ending with a final
node.

initial final intermediate

action different same

Figure 1: Approvability key

The key for the approvability graph figures is summarized
in Figure 1. Initial nodes are drawn as a dashed circle;
final nodes are indicated as circles with a wide boundary;
intermediate nodes have normal solid boundary; and edges
are drawn as solid arrowed lines. Different user constraints

4This is worded to take into account edges being traversed
0, 1, or multiple times.

are indicated by a solid (red) undirected arc between two
edges while same user and self-same user are indicated by
a dashed (blue) undirected arc between two edges. Note
that in the examples that follow, the only constraints are
different user.

The approvability graphs are next illustrated through a se-
ries of examples.

Figure 2: Purchase order DSoD

3.1 Simple DSoD
In Figure 2 an example of a 4-action sequence is shown in
which the same role performs every action, and no user can
perform more than one action. Hence, there is a DSoD
different user constraint between every pair of actions. This
graph corresponds to the 4 stage purchase sequence in the
introduction of this paper: Each edge is labeled with the
role clerk, and hence constraints are needed between each
pair of actions (edges).

Note that if instead we had separate, pairwise disjoint roles
for purchase order clerk, shipping clerk, end user, and payables
clerk, then no constraints would be needed.

3.2 Medical consultation
We next describe a medical example, summarized in Fig-
ure 3. In a medical consultation the primary physician de-
cides that consultations are needed with one or more con-
sulting physicians. She creates a role containing the physi-
cians she wishes to consult. The cardinality of the created
role determines the initial node in the approvability graph.
Each consultant performs tests and then inserts a report,
thus performing their part in the approval sequence (The
consultants count down in the order they finish, there is no
predetermined order).

Figure 3: Consulting physicians

The approvability graph ensures that each physician inserts
their report exactly once, since there is a SoD request in the
“count down” portion of the approvability graph. Note that
this approvability graph is capable of supporting consulta-
tions with between 1-4 physicians; an approvability graph
supporting up to N consultations could be constructed with
N + 1 states.

3.3 Weighted approval
We now show how alternative paths can be used to pro-
vide Sandhu’s weighted approval (see Section 2). Figure 4

executive

manager manager

Figure 4: Weighted approval

shows a simple approval graph in which either two different
managers or a single executive can approve.

3.4 Document revision
We next describe an undoubtedly familiar problem to the
reader; preparing and revising documents in which multi-
ple people take part in the authorship, editing, and release.
There are many interesting concurrency issues associated
with this problem, which we ignore here. Instead we fo-
cus on tracking who did what, and ensuring drafts are not
shared until they are proofed and approved.

We next describe the document states for authors to edit a
document and then have it approved by the manager.

Draft Document is undergoing revision.

Edited The author has finished editing the document, and
is ready to move onto the next stage.

Proof Someone other than the author of the last edit checks
that the document is sound. This can be generalized
to multiple proofreaders.

Released The manager has accepted the document.

Reject The manager rejects the document and work ceases
on it.

We note also, that one of the possible actions is that the
document is referred back to the author with comments.

draft edited proof

released

reject

worker worker
manager

manager

manager

Figure 5: Document revision approval graph

In Figure 5, the approvability graph is shown. The DSoD
specification is quite small, since the proof reading should
be done by someone other than the author.

There are two interesting issues in this approvability graph.
The first is multiple final states, released and rejected. This
results in different possible approval sequences when trac-
ing the approval graph. The second is that there is a loop
consisting of three action specifiers (and three nodes); if the
loop is traversed x times, then the 3 action specifiers corre-
spond to 3x actions.

4. ANALYSIS
In this section we consider approvability sequences—which
describe actions and the users who perform them. While
the approvability graph specifies both the sequencing of ac-
tions and the roles that can perform the actions, it does
not describe which users are associated with which roles.
Hence, to generate approvability sequences, both the user-
role assignment—that is, determining the membership of
each role—and an approvability graph must be given.

We describe user-action assignment—how users can be as-
signed to perform actions while ensuring that approvability
sequences can be completed along any path from the node
after that action to a final node in the approvability graph.
In general, the user-action assignment requires that a user
can perform an action only if (1) she is a member of the cor-
responding role, (2) no constraints are violated with earlier
actions in the action sequence, and (3) assignment of the
user to the action does not prevent the completion of any
task which contains the action sequence as a prefix. The
first two points concern past actions while the third point
considers future actions. Two methods of determining the
user-action assignment are considered here:

scheduled approvability depends on both past and fu-
ture actions

unscheduled approvability depends only on past actions.

In scheduled approvability, the user that will perform a given
action is selected when the task begins thus locking in specific
users to future actions5. In unscheduled approvability, the
user who performs an action is determined when the action
is performed. While unscheduled approvability may require
more users per role, it avoids delaying a task because the
selected user is unavailable at the time the action is to be
performed. Thus, as long as some user is available which
does not violate past constraints, unscheduled approvability
does not delay the task, and hence the urgency with which
the task can be completed is not affected. BFA considered
only scheduled approvability.

We will show modest restrictions on the approvability graph
which ensure that both scheduled and unscheduled approv-
ability are possible given sufficient number of users per role.
Given such approvability graphs we will

1. show how to determine the exact bound on the number
of users for unscheduled approvability when all differ-
ent user constraints are between edges labeled with
the same role;

2. give upper bounds on the cardinality of the user-role
assignment so that approvability graphs can be un-
scheduled approvable; and

3. show that the problem of DSoD is NP-Complete.

5One can try to reschedule the task later, but an alternate
schedule may not be possible and in addition we shall show
that scheduling is NP-Hard.

4.1 Scheduled and unscheduled approvability
We begin by defining the nodes which are reachable from a
given node, if there are enough eligible users to approve.

Definition 1. An action sequence for approvability graph
system S and user-role assignment A is an alternating se-
quence of nodes and users beginning and terminating with
a node and denoted [v0, u0, v1, u1, . . . , vn] where v0 ∈ I and
for 0 ≤ i < n

• vi+1 ∈ Succ(vi),

• for all j 6= i, if the edge [vj , vj+1] has a different user
constraint with [vi, vi+1], then ui 6= uj.

• for all j 6= i, if the edge [vj , vj+1] has a same user or a
self-same user constraint with [vi, vi+1], then ui = uj.

• ui is a member of the role for action [vi, vi+1].

An action sequence is an approval sequence if vn ∈ F .

An action sequence corresponds to the current state of agree-
ment. An approval sequence corresponds to a completed ac-
tion sequence, meaning that no more agreement is needed
(or possible). Of course, there can be many possible final
nodes, for different sorts of agreement that can be reached.

The goal is to be able to extend every action sequence into
an approval sequence, and thus complete the task. The next
definition describes what it means to do that for scheduled
approvability (called s-approvable) and for unscheduled ap-
provability (called u-approvable).

Definition 2. An action sequence

seq = [v0, u0, v1, u1, . . . ui−1, vi]

for approvability graph system S and user-role as-
signment A is u-approvable (resp. s-approvable) to
vn ∈ F , written U(seq, vn) (resp. S(seq, vn)), if either

• vi = vn or

• for any v ∈ Succ(vi) such that vn ∈ Succ∗(v) and
for all u (resp. exists a u) such that seq′ = seq|[u, v]
(where ‘|’ is the sequence concatenation operator) is an
action sequence then U(seq′, vn) (resp. S(seq′, vn)).

The second point says that any action specified (by the ap-
provability graph) from vi and which is a predecessor to vn

must be traversable. Hence, all paths to vn must be possible.

Note that s-approvable says there is some sequence of user
actions to reach state vn. It does not say that any sequence
can reach approval. In Figure 6 for example, consider the
user-role assignment r0 has members u0, u1; r1 has members
u1, u2; and r2 has members u0, u2. Then [v0, u0, v1, u1, v2]
is s-approvable to v3 since [v0, u0, v1, u1, v2, u2, v3] but

r0 r1 r2

v0 v1 v2 v3

Figure 6: An approvability graph which is s-
approvable but not u-approvable (depending on role
assignment)

[v0, u0, v1, u2, v2] is not s-approvable to v3. Note that se-
quences which are only s-approvable may lock specific indi-
viduals into performing future actions, even in the absence
of same user constraints, and hence the completion of the
task may depend upon the availability of specific users.

In contrast, u-approvability says that any user u which is the
member of a role and which does not have a SoD conflict
with a previous action can perform that action while en-
suring that any reachable action can be performed. Hence,
u-approvability looks only at past actions yet also ensures
that the workflow does not get stuck. (We shall develop
suitable restrictions both on the approvability graph and on
the cardinality of each role associated with an edge to show
that u-approvability holds.)

The above deals with particular final nodes; the next defi-
nition defines system-wide properties.

Definition 3. The system is s-approvable (resp. sys-
tem is u-approvable) if for all v ∈ I and v′ ∈ F it holds
that S([v], v′) (resp. U([v], v′)).

4.2 Bounding the paths in the approvability
graph

Note that although the number of states and successors is
bounded, the length of paths is not bounded since there can
be cycles. We next analyze cycles to bound the number of
edges that need to be considered in a user-action assignment.

Definition 4. An edge e in an approval graph consumes
a user if there exists e′ reachable from e in the approvability
graph and there is a different user constraint between e and
e′.

If an edge consumes a user, then the ability to complete
the approval sequence depends on more than just the role
being nonempty. Note that in SSoD users are not consumed,
and hence the role must only be non-empty for the approval
sequence to complete. Of course, more users can be hired to
complete a DSoD task but it is neither practical nor secure
to add new users because your access control system is stuck!

Definition 5. An edge e in the approval graph cycli-
cally consumes a user if e is part of a cycle, e consumes
a user, and there is not a self-same user constraint on e.

Without the self-same user constraint, successive iterations
of an action (in a loop) may be performed by different users.

Hence, these users become unavailable for any future action
which has a different user constraint with e. This limits
the organization’s flexibility to assign users to actions, and
hence delays tasks until a specific individual is available.

Proposition 6. If there exists an edge in an approvabil-
ity graph which cyclically consumes a user, then the number
of users necessary for u-approvability may be unbounded.

Figure 7: Unbounded number of users needed

Proof. Consider the loop in the Figure 7. Assume that
there are n users in a role: By traversing the loop n times
and using a different user on each iteration of the bottom
edge of the loop it will be impossible to reach the final
node.

Note that the graph in Figure 7 is s-approvable, since the
same user can be used for the action corresponding to a
given action specifier.

Proposition 7. If no edge in the approvability graph cycli-
cally consumes a user, then it suffices to consider sequences
of actions in which duplicate actions have been removed to
determine whether it is u-approvable or s-approvable.

Proof. We note that each edge in a successive iteration
either has no SoD constraint with successive edges or is re-
quired to be performed by the same user each time. Hence,
multiple iterations of the loop do not change the assignment
problem for later actions.

The previous lemma gives sufficient conditions to ensure
that multiple traversals of an edge are the same as a sin-
gle traversal with respect to approvability. The next theo-
rem gives minimum role cardinality to ensure tasks do not
get stuck for approvability graphs in which constraints are
always between edges labeled with the same role.

Theorem 8. If an approval graph does not have any edges
which cyclically consume a user, and all of the different user
constraints are between edges labeled with the same role,
there is an algorithm which can determine the minimum
number of users in each role and which guarantees
u-approvability, if u-approvability is possible.

Proof. Let N be the number of edges in the approvabil-
ity graph. Consider a sequence of edges [e0, e1, . . . , en] where
each edge in the approval graph appears at most once. A
sequence is used to list the edges in an approval sequence in
the order they were first visited. Then if there is a path in
the approval graph which traverses the edges in sequence,
then that path can have at most N edges between each edge

in the sequence (since cycles would be superfluous). It is
sufficient to consider all such paths where e0’s from node
is an initial node and en’s to node is a final node, since
other paths just repeat edges which by the conditions of the
theorem have no effect.

For each such sequence s, compute the minimum cardinal-
ity ns,r of each role r for which unscheduled approvability
holds using its definition. We then compute for each r the
maximum over all s of ns,r. (Note that ns,r ≤ N).

To obtain the more general case which allows different user
constraints between different roles, it is sufficient to merge
together the roles and then apply the resulting cardinality
constraints to each of the roles. The algorithm for these
cardinality constraints is given in the next theorem. The
difference between the next theorem and Theorem 8 is that
this one allows actions labeled with different roles to have
different user constraints between them and in turn gives up
minimality.

Theorem 9. If an approval graph does not have any edges
which cyclically consume a user, there is an algorithm which
can determine the number of users in each role and which
guarantees u-approvability, if u-approvability is possible.

Proof. We once again consider the sequences [e0, e1, . . . , en]
of Theorem 8 and show a bound on role size so they are u-
approvable. First we merge together all roles which have a
different user constraint between them (recall there are no
same user constraints possible between different roles) and
compute by Theorem 8 the cardinality of each role. The
merged roles conceptually constitute a new role.

If after a set of roles {r0, r1, . . . rn} have been merged, the
new composite role requires user cardinality c then it suffices
if each one of the roles ri, i = 0, 1, . . . n, has cardinality c.
The set of different user constraints on each role can be
satisfied since each role has a subset of the constraints as
the merged role but the same number of users.

For example, to apply Theorem 9 to the example in Fig-
ure 6, roles r0, r1, and r2 are merged; the result is that
three users per role are sufficient to ensure u-approvability.
If each role contains the same users, three users are neces-
sary. In general, however, tighter bounds on role size can
be obtained if more is known about the relationship of the
roles (for example, if a user in role r1 can never have been a
user in role r2), but that is beyond the scope of this paper.

In the absence of loops, any approvability graph which is
u-approvable is also s-approvable, since the same number of
users per role who enable u-approvability will certainly en-
able s-approvability. In the presence of loops, s-approvability
is possible where u-approvability is not: For example, the
approvability graph in Figure 7 is s-approvable by assigning
the same user each time to the edge which cyclically con-
sumes a user. Thus, by adding a self-same user constraint
to edges which cyclically consume a user, any s-approvable
graph can be converted into a u-approvable graph.

We note that by removing duplicate edges in a path, each
action specifier is effectively traversed at most once, and
we can extend BFA to always find an s-approvable schedule
under reasonable conditions.

4.3 Conflict graph
We say that an approvability graph is well formed if given
a sufficient number of users per role it will not get stuck.
In the section, the conflict graph is introduced and used to
(1) determine whether an approvability graph is well formed
and (2) provide a polynomial-time algorithm to determine
a bound on the number of users needed for u-approvability.
The conflict graph is an undirected graph whose nodes
correspond to edges in the approvability graph. The con-
flict graph can be constructed only when no edge cyclically
consumes a user. Further we assume, without loss of gener-
ality, that there does not exist two edges in the approvability
graph with a same user constraint between then unless both
edges can be in a path from an initial node.

The conflict graph is constructed as follows:

initialization of the graph

• nodes in the conflict graph correspond to edges in
the approvability graph and

• if two nodes n and n′ in the conflict graph corre-
spond to edges in the approvability graph with
a different user constraint between them, then
there is an edge between n and n′.

collapse the graph by repeating the following step until
there are no more nodes to be merged: If there are two
edges in the approvability graph which have a same
user constraint between them then merge the two cor-
responding nodes in the conflict graph.

For example, Figure 8 is the conflict graph corresponding to
the approvability graph in Figure 6.

v0, v1 v1, v2 v2, v3

Figure 8: Conflict graph for Fig. 6. (The nodes are
labeled with the edges of Fig. 6 from which they are
derived.)

Theorem 10. The conflict graph has self loops iff the
approvability graph has a sequence of edges [e0, e1, . . . en]
where there is a same user constraint between ei and ei+1

for 0 ≤ i < n and a different user constraint between en and
e0.

Proof. ⇐ The approvability graph cannot have different
user constraints between the same action specifier, therefore
prior to merging nodes in the conflict graph there are no self
loops in the conflict graph. Hence, to form a loop a sequence
of nodes must be merged until one contains a different user

constraint to another previously merged action. Let the
different user constraint be between en and e0. Then there
must be a path of same user constraints in the merged node
from e0 to en, otherwise e0 would not have been merged
with en.

⇒ Just merge the nodes in the order e0, e1, . . . , en and there
will be a self loop.

A self-cycle in the conflict graph means that the constraints
can prevent some paths from being traversed. By eliminat-
ing conflict graph self cycles and approvability graph edges
which cyclically consume a user, every traversal in the ap-
provability graph is an approvability sequence.

Theorem 11. If the number of users at each node in the
conflict graph is greater than or equal to the degree plus one
of the node and there are no self loops then unscheduled ap-
provability holds.

Proof. Assign one user to each node of the conflict graph
so that any two adjacent nodes are assigned a different user.
This can be done in a single pass over the nodes, as there is
always one more user than adjacent nodes, we simply select
a user who has not been assigned to any of its neighbors.

Sufficient conditions for unscheduled approvability of
a system
We note that the sufficient conditions are not necessary.
Consider a conflict graph where n0 conflicts with n1 and
n1 conflicts with n2. The degree of the graph is 2, and thus
Theorem 11 says that 3 users will be sufficient, even though
2 users suffice.

4.4 DSoD is NP-Complete
We next show that whether a simple SoD task can com-
plete is inherently NP-Complete. More exactly, given a con-
flict graph and the users that can assume a role, determine
whether there is an assignment of users to actions that sat-
isfies both the roles and the conflicts. We shall call this later
problem SDSoD, for Simple DSoD. The proof is by reducing
3SAT to SDSoD.

Our goal is to show that DSoD even in its simplest form
is NP-Complete. Hence, the SDSoD problem will rely on
a fixed number of actions all of which need to be executed
(that is, there are neither alternative outcomes nor loops).
The order that actions are performed is immaterial, as there
are no loops. Moreover, we shall consider only different user
constraints between actions. Clearly, if this most simple
form of SDSoD is NP-Complete, then any more complex
formulation will of necessity need to be able to represent
this simpler form and hence be NP-Hard.

We next review 3SAT and then show its correspondence to
SDSoD.

3SAT:
Consider 3SAT, which is NP-Complete. Given a boolean
expression of the form:

(v0,0∨v0,1∨v0,2)∧(v1,0∨v1,1∨v1,2)∧· · ·∧(vC,0∨vC,1∨vC,2)

where each vi,j is either xk or ¬xk for some 0 ≤ k ≤ N
and where the clauses are numbered 0 to C. The problem
is whether there some boolean assignment to x0, x1, . . . , xN

such that the expression is true. For example, consider the
below boolean expression:

(x0 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x0 ∨ ¬x0 ∨ x1) (1)

We now map an instance of 3SAT to into a SDSoD problem
of polynomial size, thereby showing that SDSoD is NP-Hard.
We describe the actions necessary to represent the 3SAT
problem. For 0 ≤ i ≤ N :

ti The “user” from the role {xi,¬xi} which gets the value
true.

fi The “user” from the role {xi,¬xi} which gets the value
false. Of course, ti and fi must have different users
so that one of {xi,¬xi} gets true and the other gets
false.

clausej the jth boolean clause, for 0 ≤ j ≤ C.

• If both xi and ¬xi are in clausej , then there is no
constraint between clausej and either of fi or ti

otherwise

• If xi (resp. ¬xi) is in clausej then there is a differ-
ent user constraint between clausej and fi (resp.
ti).

The diagramming of actions and truth assignment for the
general problem is shown in Figure 9 (without the different
user constraints between truth assignment and clauses).

In Figure 10, a complete representation of 3SAT problem
in Expression (1) as a SoD problem is given. For example,
if clause0 gets the value ¬x2 then t2 must get the value
x2 which forces f2 to get the value ¬x2 which means that
clause1 must get a value different from x2.

Given the constraints, we now describe why SDSoD com-
putes 3SAT. The actions ti and fi provide a truth assign-
ment, since each xi is independently chosen to be either true
(performs ti) or false (performs fi).

The clausej is true if and only if at least one of its terms
vj,0, vj,1 or vj,2 is true. This is ensured by the different
user constraint, which rules out “users” which have been
assigned to false. Hence, iff for each clause action there is
a user xi or ¬xi which can perform it, then the expression
is satisfiable. This leads to the general result:

Theorem 12. SDSoD is NP-Complete.

Proof. The above reduction shows that we can embed
any 3SAT problem in a DSoD problem, showing that it is
NP-Hard. It is trivial to show that it is NP-Complete: guess
an assignment of users to roles and then iterate through the
graph and ensure that all roles and different user constraints
are satisfied.

5. CONCLUSION
We considered a task which consists of actions performed
by users and having Separation of Duty (SoD) constraints
between these actions. We introduced an approvability graph
system which contains:

• a directed graph whose edges correspond to action
specifiers and paths, not necessarily simple, from ini-
tial to final nodes corresponding to tasks;

• associated with each edge is a role, or groups of users,
which may perform the action; and

• SoD constraints between edges.

The approvability graph allows different tasks to be com-
pleted from the same initial action (e.g., approve or deny a
loan application), and loops enabling arbitrary number of
iterations of an action specifier (e.g., when editing a paper).
Because of the loops, an approvability graph can define an
unbounded number of tasks.

The approvability graph is the first model which can describe
loops.

When the approvability graph is combined with the user-role
assignment, feasible approvability sequences can be gener-
ated, if any exist. We discuss two different ways to gener-
ate these sequences, one which only uses past information
called unscheduled approvability and the other requires both
past and future (“lookahead”) information called scheduled
approvability. Although scheduled approvability may “lock
in” users to perform future actions (and thus may delay task
completion if such users are unavailable), in general, it re-
quires fewer users per role. Clearly, if there are sufficient
users per role it is better to use unscheduled approvability
due to its increased flexibility.

We then considered sufficient well-formed conditions on the
approvability graph to ensure that every task described by
it can always complete. We show that for scheduled ap-
provability, it is sufficient not to have a cycle of constraints
with exactly one different user constraint. For unscheduled
approvability there is an additional sufficiency requirement
that an action edge in a loop has to have a self Same user
constraint on it, if it cyclically consumes a user.

Given such well-formed approvability graphs, an algorithm
need only consider sets of edges (that is, ignoring repeated
transitions of an edge) to determine the minimum number
of users per role. For these graphs, optimal schedules are
possible but unfortunately, due to the below result, are NP-
Hard.

We next considered (simple) algorithms which will provide
bounds on the number of users but only require polynomial
time. We show these algorithms to be correct even when
constraints are between different roles.

Finally, we showed that analysis of even simple DSoD prob-
lems are NP-Complete. This is interesting because (1) such
analysis is called computationally intractable, and hence

t0 f0 t1 f1 tN fN

clause0 clause1 clauseC

{x0,¬x0} {xN ,¬xN}{x1,¬x1}{x0,¬x0} {xN ,¬xN}{x1,¬x1}

{v0,0, v0,1, v0,2}{v1,0, v1,1, v1,2} {vC,0, vC,1, vC,2}

Figure 9: DSoD actions shown as rectangles, and edges between them indicate different user constraints.
(Note edges are not shown between ti (or fi) and clausej, since these are problem specific.) Above each
action is the set of users which can perform that action.

t0 f0 t1 f1 t3 f3

clause0 clause1 clause2

{x0,¬x0} {x3,¬x3}{x1,¬x1}{x0,¬x0} {x3,¬x3}{x1,¬x1}

{x0,¬x2, x3} {¬x1, x2,¬x3} {x0,¬x0, x1}

{x2,¬x2}{x2,¬x2}

t2 f2

Figure 10: DSoD for Expression (1). The edges all represent different user constraints.

may be too expensive to perform and (2) it is the first NP-
Completeness result which is inherent in a SoD problem.

Techniques for specifying and analyzing SoD have wide ap-
plicability, as any organization must tailor their own SoD
policies. Such policies depend not only on organization size,
but also on the urgency and security needs of a given task.
The specification and analysis given here are valuable as
they enable the SoD tasks to be clearly specified and ensure
that such tasks do not ever get stuck, a condition which
needs to be avoided in any practical application.

6. ACKNOWLEDGEMENTS
Special thanks to Robert Sloan who made many sugges-
tions improving the presentation of the theory. In addition,
Damian Roqueiro very carefully read the paper and help-
ful suggestions were made by Prof. V. N. Venkatakrish-
nan, Mani Radhakrishnan, Ashley Poole, Jorge Hernandez-
Herrero, Mike Ter Louw, Hareesh Nagarajan, and the anony-
mous referees.

7. REFERENCES
[1] G.-J. Ahn and R. Sandhu. The RSL99 language for

role-based separation of duty constraints. In Proc. of
the ACM Workshop on Role-Based Access Controls
(RBAC), pages 43–54. ACM Press, 1999.

[2] Atluri, Chun, and Mazzoleni. A chinese wall security
model for decentralized workflow systems. In SIGSAC:
8th ACM Conference on Computer and
Communications Security. ACM SIGSAC, 2001.

[3] E. Bertino, E. Ferrari, and V. Atluri. The specification
and enforcement of authorization constraints in
workflow management systems. ACM Transactions on
Information and System Security (TISSEC),
2(1):65–104, 1999.

[4] D. F. C. Brewer and M. J. Nash. The Chinese Wall
security policy. In Proc. IEEE Symp. Security and
Privacy, pages 206–214, 1989.

[5] D. D. Clark and D. R. Wilson. A comparison of
commercial and military computer security policies. In
Proc. IEEE Symp. Security and Privacy, pages
184–194, 1987.

[6] J. Crampton. Specifying and enforcing constraints in
role-based access control. In Proc. of ACM Symposium
on Access Control Models and Technologies
(SACMAT), pages 43–50. ACM Press, 2003.

[7] J. Crampton. An algebraic approach to the analysis of
constrained workflow systems. In Proceedings of the
Foundations of Computer Security – FCS’04,
volume 31, Turku, Finland, June 2004. TUCS General
Publication, Turku Centre for Computer Science.

[8] S. D. C. di Vimercati, S. Paraboschi, and P. Samarati.
Access control: principles and solutions. Softw, Pract.
Exper, 33(5):397–421, 2003.

[9] D. Ferraiolo, J. Cugini, and R. Kuhn. Role based
access control (RBAC): Features and motivations. In
Annual Computer Security Applications Conference.
IEEE Computer Society Press, 1995.

[10] D. F. Ferraiolo and R. Kuhn. Role based access
control. In 15th National Computer Security
Conference, pages 554–563, Baltimore, MD, 1992.

[11] S. N. Foley. Separation of duty using high water
marks. In Proc. of the IEEE Computer Security
Foundations Workshop (CSFW), pages 79–88. IEEE,
18-20 June 1991.

[12] V. D. Gligor, S. I. Gavrila, and D. Ferraiolo. On the
formal definition of separation-of-duty policies and
their composition. In Proc. IEEE Symp. Security and
Privacy, pages 172–185, 1998.

[13] M. Hitchens and V. Varadharajan. Tower: A language
for role based access control. In POLICY, pages
88–106, 2001.

[14] T. Jaeger and J. E. Tidswell. Practical safety in
flexible access control models. ACM Transactions on
Information and System Security (TISSEC),
4(2):158–190, 2001.

[15] J. B. D. Joshi, E. Bertino, B. Shafiq, and A. Ghafoor.
Dependencies and separation of duty constraints in
GTRBAC. In Proc. of ACM Symposium on Access
Control Models and Technologies (SACMAT), 2003.

[16] P. A. Karger. Implementing commercial data integrity
with secure capabilities. In Proc. IEEE Symp. Security
and Privacy, pages 130–139, 1988.

[17] K. Knorr and H. Weidner. Analyzing separation of
duties in petri net workflows. In Proceedings of the
Information Assurance in Computer Networks -
Methods, Models, and Architectures for Network
Security (MMM-ACNS 2001), volume Lecture Notes
in Computer Science (LNCS) vol 2052, St. Petersburg,
Russia, 2001. Springer Verlag.

[18] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. In Proc. of the ACM Workshop on
Role-Based Access Controls (RBAC), pages 23–30.
ACM Press, 1997.

[19] N. Li, Z. Bizri, and M. V. Tripunitara. On
mutually-exclusive roles and separation of duty. In
Proc. ACM Conference on Computer and
Communications Security (CCS), pages 42–51. ACM,
2004.

[20] S. B. Lipner. Non-discretionary controls for
commercial applications. In Proc. IEEE Symp.
Security and Privacy, pages 2–10, 1982.

[21] M. J. Nash and K. R. Poland. Some conundrums
concerning separation of duty. In Proc. IEEE Symp.
Security and Privacy, pages 201–207, 1990.

[22] M. Radhakrishnan and J. A. Solworth. Application
security support in the operating system kernel. In
ACM Symposium on InformAtion, Computer and
Communications Security (AsiaCCS’06), page to
appear, Taipei, Taiwan, May 2006.

[23] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer system. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[24] R. Sandhu. Transaction control expressions for
separation of duties. In Fourth Aerospace Security
Applications Conference, pages 282–286, 1988.

[25] R. S. Sandhu. Role activation hierarchies. In ACM
Workshop on Role-Based Access Control, pages 33–40,
1998.

[26] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[27] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In Proc. of the IEEE
Computer Security Foundations Workshop (CSFW),
pages 183–194. IEEE, 1997.

[28] J. Tidswell and T. Jaeger. An access control model for
simplifying constraint expression. In Proc. ACM
Conference on Computer and Communications
Security (CCS), pages 154–163, 2000.

