
What can you say and what does it mean?

Jon A. Solworth
University of Illinois at Chicago
851 S. Morgan Street, M/C 152

1120 SEO
Chicago IL 60607-7053

solworth@rites.uic.edu

Abstract
This paper examines some of the criteria for a certificate architec-
ture that supports trusted collaboration. Key to this support are (1)
the separation of statements from the actions they engender and (2)
the ability to make arbitrary statements. The separation of state-
ment from action enables organizations to set their own policies
and therefore control what is authorized in response to a statement.
The open ended nature to allow arbitrary statements to be created
enables the signer to fully specify her intentions. It should be possi-
ble to make these statements arbitrarily precise, by tying the state-
ments to their (semantic) contexts. Furthermore, we argue that it is
important not only to support completely formalizable statements
but also informal statements as well.

We then describe an architecture we are building which meets
the above criteria and give examples of its efficacy.

1. Introduction
Trusted Collaboration must deal with entities which may trust each
other to varying degrees. Trust by its nature is not universal, I may
trust my government but not trust yours (or trust mine more) while
you may trust your government but not mine. A trust architecture
must therefore allow the organization to determine which entities
it will trust and for what purposes. Hence, trust inherently involves
both authentication (what is requested by a user) and authorization
(what is allowed).

In the seminal paper Authentication in Distributed Systems:
Theory and Practice, Lampson et al. defines a certificate as a
(digitally) signed statement [LABW92]. The signature binds an
entity (such as a user or computer) to a statement so that under
reasonable conditions the statement cannot be repudiated by its
apparent signer. And hence, the certificate can be used—even after
the fact—to determine that a signer “says” a statement1. Lampson’s
definition of authentication is very close to its legal definition,
in which authentication ties, for example, a will, a painting, or
an historical document to its creator or signer. Hence, it seems
that certificates are an ideal foundation on which to build trusted
collaboration.

Fundamentally, signed statements will be used as justification
by remote hosts that the actions they perform have been requested
by the signer. A remote host which performs an action based on
these statements can perform them without a proper certificate—

1 Of course, there are many assumptions needed for distributed authenti-
cation to be non-repudiatable, including trusting the computer that the user
directly interacts with and the safeguarding of private keys.

just as, for example a driver’s license might be issued without the
proper documentation by the Department of Motor Vehicles—since
it is the remote host that authorizes and then performs an action.

We note that the ability to make arbitrary, non-repudiatable
statements is severely limited in non-distributed systems. This is
because a computer which creates a statement cannot use it to prove
that a user said it, since if it can create the statement with user ap-
proval then it can also create the statement without user approval2—
and hence in non-distributed systems authentication is limited to
its most basic form, identification. But in distributed systems, the
signing computer and relying computer are distinct, and hence the
relying computer cannot counterfeit statements from the signing
computer. Interestingly, the protections become stronger with more
mistrust between signing and relying systems, for example when
these computers belong to different organizations, since it becomes
more difficult for the relying computer to extract the keys or trick
the signing computer. (This mirrors the physical world, where con-
tracts are most important between organizations which distrust each
other). In addition, as mistrust grows it becomes increasingly im-
portant to make the statements precise, and thus limiting what the
relier is justified in doing.

Despite Lampson’s et al. evocative characterization of certifi-
cates, certificates have traditionally only been used to make very
limited types of statements. We believe that the limited expressive-
ness have curtailed the usefulness—and decreased the popularity—
of certificates. More expressive certificates could form a ubiquitous
building block for constructing secure distributed systems.

In Lampson’s model, the statements ultimately are used to de-
termine who can access a given object. His PKI describes the ability
to delegate and allow access to objects; that statements are trusted
if there is a chain leading from a user who has permission on the
specified object to the use of that object; the logic determines which
are legitimate statements; and then an access is allowed.

Several difficulties result from applying Lampson’s model to
trusted collaboration, including:

semantic power: because these systems are derived from DAC
systems, there are properties that cannot be enforced, including
information flow properties [BL76, Bib77].

semantic mismatch: the statements that can be made with their
certificates are not those which are natural for a user to make.
For example, a human may want to make a statement such as

2 Once the computer has created one statement for a user, it can create
arbitrarily more. We assume, of course, that it is impractical for the user to
create a signed statement by manually performing cryptography.

“buy Ross Anderson’s Security Engineering book from Ama-
zon for $59.30”. The variety of statements that a user might
want to make is very large, see Ellison’s SPKI requirements for
a substantial enumeration of examples [Ell99].

delegation: far too much power is transferred to the delegatee
since the delegator can only limit what happens by time, ob-
ject accessed, or permission. Broad (unrestricted) delegations
weaken non-repudiation since they provide more latitude for a
delegatee to exceed the intentions of the principal.

frequency: low-level statements may be continuously required,
overwhelming a human’s ability to make them. To cope, the
human increases delegation, but this reduces control.

structural dependencies: because certificates are specified in
terms of system objects, the certificate signer must know what
objects to specify. However, systems which are run by other or-
ganizations have internal structure which is not, and should not
be, visible to outsiders. When interacting with these remote sys-
tems, the user doesn’t care and cannot specify how something
is done; the user cares only about its external effect.

Traditional certificate systems do not distinguish authorization
from authentication. Here authentication ensures that the state-
ments are made by the signer and are believed to be valid; these
statements are the basis of performing actions on a remote system
and hence must be authorized by that system’s owner. This lim-
its the way in which autonomous organizations can protect them-
selves, since they cannot control which statements (certificates)
they will accept (that is, act upon). Hence, separating authorization
from authentication can increase the quality of both, more precisely
denoting what should be done, and thus providing greater security.

The problem with supporting arbitrary statements are two-fold,
(1) What does the statement mean? and (2) What should happen
as a result of some statements? Of course, for such certificates to
be useful it must be possible to automate (2) which consists of (a)
authorization and (b) actions to be performed. And this requires a
new certificate system architecture.

In this paper we examine some of the consequences of making
this separation and describe how we address the above issues in the
design of the SayAnything Certificate Architecture. Our focus here
is on the high level architecture of our system, a paper describing
the implementation is in preparation.

The rest of the paper is organized as follows: Section 2 describes
some of the issues we considered in designing SayAnything; and
Section 3 describes our design. Section 4 illustrates the usefulness
of our architecture through various examples. In Section 5, we
describe related work and finally in Section 6 we conclude.

2. Design Considerations for a Certificate
Architecture

In designing the SayAnything Certificate Architecture, a number of
practical issues were considered:

Structured vs. non-structured statements If any type of state-
ment can be written, then the statement must be written in En-
glish or some other natural language. Unfortunately, natural lan-
guage statements cannot be automatically processed. If instead of
a natural language, a structured form is used then flexibility is lost.
How can these issues be reconciled?

Centralized vs. distributed authority Centralized authorities—
such as the Internet Assigned Number Authority3 (IANA), which
assigns port numbers to services (among other things)—become

3 http://www.iana.org

cumbersome with (1) a growing number of entities and (2) pro-
tocols (certificates) used by a small number of organizations. On
the other hand, a totally distributed means of tracking new types of
statements (certificates), such as two organizations mutually num-
bering the certificates which they use, can result in confusion when
the certificate is adopted by a third organization, whose certificate
numbering is inconsistent with the newly adopted certificate.

Associating actions with statements Ultimately, the purpose of
making statements in the context of a computer system are to cause
or allow some actions to occur. In general, these actions cause state
changes on remote machines. Hence, sequences of statements must
automatically trigger actions on systems remote from the statement
issuer.

Trust issues A certificate serves the trust needs of both the signer
and the verifier. The signer wants to limit the actions that the verifier
takes on her behalf. The verifier wants to ensure that he is justified
in the actions he performs, so that the signer bears the responsibility
for them.

Debugging, dispute resolution, and forensics A primary purpose
of certificates is to prove what was said, and hence what should
have happened. Therefore, certificates are a means for debugging
distributed systems, for resolving disputes (and thus eliminating
“he said”, “she said” difficulties), as well as for providing logs for
analyzing the system. Certificates must be comprehensible to signer
and relier as well as dispute resolution arbitrators.

3. The SayAnything Certificate Architecture
The SayAnything Certificate Architecture uses two cryptographic
primitives:

A digital signature over a text can be created only by the holder of
a private key, who is presumably its owner. The corresponding
publicly available key is used to verify that the signature does
indeed match the text.

A (strongly) collision resistant one-way hash is used to identify
a text. The one-wayness ensures that, for practical purposes, it is
impossible from the hash code to determine the corresponding
text. The (strong) collision resistance means that effectively it
is impossible to find two different texts which hash to the same
value. In the rest of the paper, we shall informally use the term
one-way hash function to mean (strongly) collision resistent
one-way hash function.

We next describe the SayAnything Certificate Architecture.

Certificate Meaning In the SayAnything Certificate Architecture
each certificate is associated with two descriptions, its syntax and
its semantics.

The syntax description is written in our Certificate Definition
Language (CDL), which is similar to an XML schema; it describes
the certificate as a sequence of fields, each field having a name,
a type, and a range of valid values. Each type is machine indepen-
dent, so that for example an unsigned 32-bit integer (uint32) has the
same properties on every computer architecture. From the syntactic
description, a parser is generated for the certificate, so that the cer-
tificate’s constituent fields can be extracted by name. In this paper,
for brevity we will not use the CDL, but instead use a somewhat
simplified tabular format to describe certificate syntax.

The schemes discussed here do not require certificates to be
coded in CDL; they could be encoded as XML certificates or
X509v3 certificates. XML has been used in trust system, see
for instance [BFS04b] while X509v3 have been used in others
[HMM+00]. In fact, it is possible to support all three certificate
types in the same system.

http://www.iana.org

The semantic description contains the meaning of the certifi-
cate, it is parameterized with the names of fields of a particular
certificate. It is modeled on blank legal forms, such as a real estate
purchase form, which can be used by simply filling in its fields. The
semantic description corresponds to the blank form; the certificate
contains the parameters to fill in the blanks; and the syntactic defi-
nition allows the fields to be extracted from the certificate.

Other than some minor syntactic conventions to distinguish cer-
tificate parameters from other text in the semantic statement, no
other requirement is placed on the semantics definition. In particu-
lar, there is no requirement that the statement is in any way reason-
able.

Hence, some of the statements might make no sense whatso-
ever or might have unknown or unintended effect. But in return,
the certificate form is completely general. SayAnything certificates
can represent existing certificates, including formally defined ones.
Arbitrary new statements (certificates) can be represented by cre-
ating new syntactic and semantic definitions. In addition to being
an easily extensible system, we argue in the next section that this
representation is also a fundamental benefit in representing trust.

We note that while it is possible to embed both the syntactic and
semantic description in the certificate, it is undesirable to do so for
at least two reasons. The first, and most obvious, reason is that it is
awkward and may dramatically increase the size of the certificate.
The second, is that the semantic definition may include information
which is confidential. While it would be foolhardy to sign or rely
upon a statement in which the meaning was unavailable, it is also
desirable to limit who can view its semantic description.

Hence, the certificate incorporates both the syntactic and seman-
tic definition by reference. We avoid the use of a naming authority
by the simple expedient of using a strongly collision resistant one-
way hash on the definition to compute the reference. This ensures,
with overwhelming probability, that if two entities have the same
syntactic and semantic hashes, then they have the same syntactic
and semantic definition.

Certificate Structure In Figure 1, the certificate header syntax—
that part which is given in every certificate—is shown in tabular
form. In addition to the size, certificate encoding version, and
the aforementioned syntaxHash and semanticHash, the certifi-
cate header contains fields which will be used in determining the
certificate validity.

The version field can be used to create suitable cryptographic
signatures for different certificate uses. For example, version 1
might be used to sign short-term certificates (those for which use
and adjudication would take less than a year) while version 2
might be intended for use and adjudication for up to ten years,
and use considerably larger (and hence more secure) signatures
and hashes. Also key sizes and cryptographic algorithms must be
changed as attacks become more effective, and hence versions will,
of necessity, change over time.

The revocationServerPublicKey can either be (1) a key for
signing revocation certificates or, (2) a key which is used to sign a
statement that the current revocation key is k, and then k is used to
sign the revocation certificate. The latter is particularly useful for
long lived certificates, since it prevents “wearing out” of the private
key corresponding to the revocationServerPublicKey.

Because the header is valid for all certificates, determining
certificate validity is standardized. A certificate is valid exactly
when all of the following conditions hold: (1) the current time is
between validFrom and validTo; (2) the fields all contain valid
values as specified in CDL; (3) if a revocation server is specified,
it provides a non-revoked certificate; and (4) the signature verifies
using the public key on the certificate. Invalid certificates obviously
cannot be used as a justification for any action.

Authorization It is not necessary to understand the full meaning
of a statement before either signing it or relying on it. People
regularly sign statements they don’t understand, and not just for
unimportant things. For example, to buy a house you might enter
into a mortgage agreement. The mortgage agreement is written
in a specialized language which may be unfamiliar to you. Even
if you understand the language its meaning cannot be interpreted
independently of legislation and case law. Moreover, its meaning is
subject to change, for example, by the outcome of a lawsuit.

Why would anyone sign such a statement? It would traditionally
be reviewed by a lawyer who is believed to be independent of the
party writing the contract. Much of the contract no doubt would
deal with unlikely contingencies, and therefore not be of great
concern. A signer would also rely on law to protect them to some
degree from predatory practices and general experience that they
know quite a few people who have signed mortgage agreements
without ill effect. In short, they would rely on the (well-founded)
belief that the mortgage document was unlikely to harm them.

For all these reasons, a full understanding of the meaning of
statements is not only impossible, it is, in general, not even at-
tempted by those either signing or relying on a statement. Of
course, if the most important statements people sign are not fully
understood and open ended, formal semantics to compute what will
happen under all circumstances is not possible. (However, when
possible formal semantics should be used, as it enhances the ability
to understand and verify systems.) In general, we believe that it is
better to state imprecisely what is meant rather than to be limited
to only statements which can be made precisely.

There is another reason why fully formalizing statements can
be inappropriate between entities which don’t trust each other: One
person’s statements cannot compel another to rely on it. (There may
be consequences for refusing to perform the implied action, but it
is up to the relying organization to decide whether or not to do
so.) The decision to accept or reject a statement might be based on
who makes them (eg. “Dick always lies.”), on what their subject is
(eg. “Dick is always reliable except about the weather.”), may have
limits as to size (eg. “Dick can be trusted with amounts less than
$10.”), or about external factors (eg. “Accept the withdrawal if the
account balance covers the amount.”).

Of course, this does not preclude the construction of formally
defined system using SayAnything certificates. We could, for ex-
ample, define an SDSI style certificate system by creating a certifi-
cate type for each of the SDSI certificates, and by specifying in the
semantic statement its formalization.

Hence, use of SayAnything certificates must inherently deal
with the question “What actions will be performed given a set of
statements?” rather than “What do the statements mean?”.

We note that while organizations make their own decisions as
to what action to perform, these decision may be constrained by
law or by agreement. For example, the organization may be legally
prohibited from discrimination, or it may have signed a credit card
agreement which requires it to accept credit cards under certain
conditions. In this case, an abiding organization could use rules
provided by third parties which would perform these actions.

The rule-based mechanism we are using is based on trust lan-
guages, and have been developed for distributed trust negotiation.
These languages are used in attribute-based systems to grant per-
missions. Our use is a bit modified from this since we must (1) use
it to produce certificates (for example, when one end is an on-line
store) and (2) perform other actions. It enables the enforcement of
strong authorization such as Mandatory Access Controls (MACs),
which is not possible with other certificate architectures.

Architecture In Figure 2, the architectural flow and major com-
ponents are specified. There are three inputs, a certificate’s syntax
description, a certificate’s semantic description, and an organiza-

Field Type Description
size uint64 size in bytes of the certificate
version uint32 version describes remaining header fields

hash and signature algorithms
syntaxHash hashType one-way hash of syntactic description
semanticsHash hashType one-way hash of semantic description
publicKey publicKeyType public key of the signer
validFrom recentDateType date and time from which certificate valid
validTo recentDateType date and time to which certificate valid
revocationServer revocationServerType address of revocation server
revocationServerPublicKey publicKeyType public key of revocation server
signature signatureType digital signature over all other certificate fields

Figure 1. Certificate header

CDL Compiler

Certificate Syntax
in CDL

Certificate parser,
generator, and validator

Active Certificate
Store

Rules

Rules Compiler

Certificate
Authorization

Certificate
Semantics

Figure 2. Architectural flow and major components

tion’s authorization rules of what to do on the receipt of a certifi-
cate.

The syntax and semantic descriptions are input to the CDL com-
piler. The semantic description is only used to generate a hash. The
syntax description is used to generate code which parses, gener-
ates, and validates certificates. The organization’s rules are input to
a rules compiler which produces the runtime engine for processing
certificates. The runtime engine is invoked on each certificate ar-
rival and for certificates which match a rule (1) some action is per-
formed and (2) they are automatically stored in the current certifi-
cate database. This enables rule processing of a certificate to base
its authorization decisions, in part, on past certificates.

The Rules description consists of a sequence of rules, each rule
is of the following form:

Rule{ c e r t }{ cond}{ a c t i o n }

where cert is the name of the certificate, cond is the authorization
conditions which must evaluate to true in order for the action to
be performed.

We have completed the implementation of all components in
Figure 2, except for the Rule Compiler which we recently began
building. The components built so far comprise about 6,000 lines
of code.

eula certificate
field type
programFile string
programHash hash

eulaAccept certificate
field type
eulaHash hashType

Figure 3. Non-header fields of eula and eulaAccept certificates

4. Examples
Theoretical arguments are helpful for determining whether the ar-
chitecture which we propose is appropriate. But a far greater mea-
sure is the usefulness of this architecture, which is illustrated next
by a sequence of examples.

End-User Licence Agreement (EULA) Traditionally, each EULA
for commercial software is handcrafted by lawyers; for open source
software, there is also a large variety (although there is much more
reuse of licenses than on the commercial side). Dealing with EU-
LAs is much like dealing with mortgage agreements—the vast
majority of people do not read them.

In a SayAnything Certificate, the EULA would be encoded in
the certificate’s semantic definition, the certificate would just name
the software product and give a hash code over the file so that the
file is uniquely defined by the eula certificate (see Figure 3). To de-
velop an informed opinion on which licences are appropriate, one
might go to one or more web sites which reviews such licences,
and choose the licenses (semantic hashes) whose reviews matched
acceptable policies. (For a corporation, there would be a more de-
tailed list of semantic hashes perhaps combined with other infor-
mation).

The rules for processing the eula certificate would ensure that
the software installed on one’s system matches the organization’s
policy, and would be significantly easier than today’s “pop up” li-
cense. The licence could be obtained before purchasing the soft-
ware. Another advantage of this scheme is that it would provide
incentives to vendors for using standardized agreements, as they
would be more readily acceptable to system owners.

Figure 4 contains a rule for the EULA certificate. There is a
single certificate type, eula, and hence a single rule. The condition
specifies the certificate version to be accepted, that the public key
must be from a list of approved software vendors, and that the one-
way hash of the program to be installed matches that specified on
the certificates. The action taken is to accept the EULA (via signing
a certificate, of course) and then to mark (label) the program file as
installable.

Rule{ e u l a }{ e u l a . v e r s i o n ==1 &
e u l a . pub l i cKey i n ApprovedSof twareVendors

& e u l a . programHash== hash (e u l a . p r o g r a m F i l e)}
{

. . . s e t h e a d e r f i e l d s o f e u l a A c c e p t . . .
e u l a A c c e p t . hash = hash (e u l a) ;
s i g n (e u l a A c c e p t) ;
l a b e l (p r o g r a m F i l e , i n s t a l l a b l e) ;

}

Figure 4. EULA Acceptance conditions

rfq certificate
field type
deliverByDate dateType
terms hashType
itemDescription hashType

quote certificate
field type
deliverByDate dateType
terms hashType
itemDescription hashType
quote usCurrency

purchase certificate
field type
quote signatureType
billingInfo hash

Figure 5. Non-header fields of rfq, quote, and purchase certificates

The eulaAccept certificate is “chained” to the eula certificate
since one of its fields is the eula certificate’s hash, which is guar-
anteed to be unique. This chaining prevents replay attacks where an
attacker might try to use the eulaAccept certificate to claim that a
different eula certificate had been accepted.

The set ApprovedSoftwareVendors could either be provided
by external files or by one or more certificate services which can
answer (via certificate) the question is x ∈ y. This makes it possible
to use sets defined by external services. For example, an external
rating organization might maintain a large and dynamic set of well
reputed vendors.

In addition to these requirements, other requirements include
determining the permissions an application has based on it vendor
and on its purpose. This scheme enables the privileges to be deter-
mined based on these and other factors.

Transactional statements It is desirable to ensure that statements
which request significant actions, such as a purchase order, are
not used in the wrong context (misplay attacks) or re-used (replay
attacks). One form of protection is to narrow the scope of the
statement as much as possible to prevent misuse, such as naming
the vendor, the item, having a tight time limit on when it is to be
used, etc.

To prevent replay, the certificate should be revoked after first
use. The mechanism for providing this is a transactional revoca-
tion server, which remembers the certificates it has seen and hav-
ing seen a certificate before, revokes future presentations of that
certificate. There is one technical point that enters here, and that
is that the revocation server check should occur as the last check
before accepting the certificate (after all of the rule’s conditions)
to prevent a certificate which will not actually be used from being

delegate certificate
field type
account accountId
publicKey publicKeyType
monthlyAmount usCurrency

revokeDelegation certificate
field type
account accountId
publicKey publicKeyType
monthlyAmount usCurrency

delegateeCheck certificate
field type
date dateType
amount usCurrency
fromAccount accountType
toAccount accountType

Figure 6. Non-header fields of delegation, revokeDelegation, and
delegateeCheck certificates

invalidated. A revocation server’s proof of validity (for first use)
is a certificate signed by the revocation server and chained to the
referenced certificate.

The certificates used in a simple transaction are shown in Fig-
ure 5. They consist of a purchaser request for quote rfq certificate,
the vendor quote certificate, and then the purchaser’s purchase
certificate. The sequence of certificate exchanges is as follows:

1. The rfq specifies a delivery date, terms of the purchase, and
a description of the item to be purchased. We assume that the
terms and item description are contained in databases available
to both parties, and hence they can be referred to by reference,
i.e., by hash.

2. The vendor responds by providing a quote in usCurrency.
Such a quote could have been crafted on the fly, but an alterna-
tive used here stores the quote certificates in the database and
just returns the appropriate quote.

3. Typically, the best quote would be accepted and the purchase
certificate would reference it by hash. There is also some billing
information contained in the certificate.

Delegation It is useful to be able to write arbitrarily limited
delegations, or as they are called in the legal world, powers of
attorney. For example, “allow Joe to write checks up to $500 per
month”. It is up to the bank to specify which delegation types will
be accepted and under what conditions. The revocation server can
be used to terminate such delegations, should it become necessary.

There are three certificate types used for the above delegation
examples, as shown in Figure 6. The first certificate, delegate,
establishes a delegation, with limits on the total dollar amount of
checks which can be written per month. The second certificate,
revokeDelegation, removes a delegation. The third certificate,
delegateeCheck, is to write a check by the delegatee.

The delegate certificate typically would be established far
in advance of the writing of the delegatee checks. Since all ac-
cepted certificates are stored in the organization’s certificate store,
the delegation certificate can be looked up as needed when a
delegateeCheck certificate arrives.

Finally, the revoke certificate, once it is checked that it is prop-
erly formed, simply removes the delegate certificate from the active

certificate store. Of course, all valid certificates should be kept until
a dispute over its use is no longer possible.

Rule{ r f q }{ r f q . v e r s i o n ==1 &
m= bes tMa tch (r f q . i tem , r f q . d e l i v e r B y D a t e ,

r f q . te rms , r f q . pub l i cKey)}
{

send (m) ; / / pre−s i g n e d c e r t i f i c a t e
}

Rule{ p u r c h a s e }{ p u r c h a s e . v e r s i o n ==1 &
f i n d (p u r c h a s e . q u o t e)}

{
l a b e l (pu rchase , a c c e p t e d) ;

}

Figure 7. Transactional Rules

In Figure 8, the delegation rules are given. These rules are simi-
lar to those given in previous examples except for the delegateeCheck
in which (1) the aforementioned certificate lookup is used to ensure
that the delegation is in effect and (2) the balance information is
checked to ensure that the delegation is not exceeded and that the
balance is sufficient to cover the check. This second issue is not an
authorization issue but is rather an application logic issue.

5. Related work
The notion of a certificate goes back to Kohnfelder [Koh78], and is,
of course, built upon public key cryptography. Kohnfelder’s certifi-
cates were used to bind a name to a public key, so that statements
signed by the corresponding private key could be verified as com-
ing from the named entity.

One of the earliest distributed authentication systems is Ker-
beros [MNSS87, KNT91]. Kerberos provides user authentication
and cryptographic protection of communications between clients
and servers. Because of the relative low performance of comput-
ers at the time it was developed, Kerberos used symmetric (secret
key) rather than public key encryption. Kerberos provides a Ticket
Granting Ticket upon password authentication, and that ticket can
be used for a period of time to obtain other tickets for specific ser-
vices. These tickets act as certificates and are used to ensure that
there is a chain from the user to the use of a resource on which that
user has some permission.

Lampson et al. [LABW92] provided a logic for reasoning about
authentication. One of the systems described by this logic was a
distributed system built at Digital Equipment Corporation. This
system used a hierarchical structure to describe trusted sources of
information, and has many similarities to Kerberos including the
use of private key to simulate public key (assuming a fully trusted
intermediary).

X.509 are the most popular certificates. They are considerably
narrower in purpose than Lampson’s certificates since they are used
only to bind a public key to a description. X.509 certificates are
used in SSL to identify the servers (typically a corporation willing
to pay for a certificate from a CA); clients are not expected to have
certificates and hence authentication is not mutual.

PGP, an email authentication system, [ASZ96] introduced a web
of trust, in which each user could specify other users that they
would rely upon for trust information. The web of trust allows every
entity to determine which other entities can be used to build more
extensive trust relationships than otherwise possible.

Rivest and Lampson proposed a certificate system called SDSI
[RL96], for Simple Distributed System Infrastructure, which latter
became known as SPKI, for Simple Public Key Infrastructure (it

is also called SDSI 2) [EFL+99]. SDSI’s name space is a graph
in which names are specified by the path (names of edges) from a
current node, thus avoiding the problems of global name spaces in-
cluding both trust issues and ambiguity of names. The SDSI graph
name space builds on the PGP web of trust. SDSI is oriented to-
wards a DAC design model, whose ultimate permission is deter-
mined by access control lists on objects.

Blaze et. al. introduced KeyNote [BFL96, BFIK99], and coined
the phrase trust management system. KeyNote departs from the
DAC orientation of earlier systems and instead relies on checking
that the credentials of a principal match some criteria for using a
network service. KeyNote allows the specification of which author-
ities can be used for which purposes.

KeyNote contains (1) credentials, (2) policy statements, and (3)
trust statements. The credentials have a domain in which they are
meaningful. Those with universal meaning would have to be allo-
cated by IANA. KeyNote describes the inadequacy of using global
certificate authorities, and provides mechanisms so that the certifi-
cate depends only on the organizations (i.e. domains) in which the
certificate is used. We have already noted that this is awkward to
manage and change for multi-organizational, but non-global, do-
mains.

A large number of trust management languages have been
proposed, see for example [BS00, WYS+02, Jim01, HMM+00,
LM03]. The trust management examples in this paper are sim-
pler than many of these other proposals, primarily because we are
not concerned with the type privacy issues often explored (where
both a user’s credentials and the organization’s policy are not in-
tended to be disclosed). Hence, the examples used here allow for a
fixed exchange a certificates, resulting in a very efficient process-
ing scheme. For a comparison of trust management systems see
[BFS04a] and [SWY+02].

We note that the trust management language is local to the or-
ganization that employs it, and hence different organizations could
use different trust management languages. These systems are inter-
operable if they have the same certificates exchanged and the cor-
rect local action performed.

Park and Sandhu [PS00] have investigated the relative merits
of different ways of binding identity and attribute certificates using
monolithic, autonomic, and chained signatures.

Crispo and Lomas investigated accountability issues having to
do with certificate authorities and how to use separation of duty
in order to reduce the assumptions needed for non-repudiation
[CL96].

Li et al. have described a flexible delegation logic for determin-
ing attributes and proving safety in a distributed system [LGF03,
LWM03].

Another interesting line of work concerns proving that a certifi-
cate says something without disclosing the (entire) contents of the
certificate. These mechanisms are primarily oriented towards at-
tribute certificates, for example, see [LL05, BCC04]. We have not
yet looked into providing these facilities within the SayAnything
Certificate Architecture, although we expect to in the future.

6. Conclusions
We believe that a trusted collaboration architecture will need to
support a wide range of statements. With a large and extensible
set of statements, it is impractical to centrally manage them.

The ability to make just the right statement protects both the
signer of the statement and the relier upon the statement. The
signer is sure that the ability to use the statement can be suitably
limited, thus reducing vulnerability in making such statements. The
relier has non-repudiatable statements to justify in the actions she
takes. The overall system becomes more efficient because dispute
resolution becomes more effective and system use is increased.

Rule{ d e l e g a t e }{ d e l e g a t e . v e r s i o n ==1 &
owner (d e l e g a t e . a c c o u n t)== d e l e g a t e . pub l i cKey))

{
. . . send ok . . .

}

Rule{ d e l e g a t e e C h e c k }{ d e l e g a t e e C h e c k . v e r s i o n ==1 &
d e l e g a t i o n = f i n d (d e l e g a t e e C h e c k . fromAccount , d e l e g a t e e C h e c k . pub l i cKey)}

{
monthlySpend = d e l e g a t e e C h e c k . amount +

accoun tSpend (d e l e g a t e e C h e c k . fromAccount ,
d e l e g a t e e C h e c k . pub l i cKey) ;

i f (monthlySpend<d e l e g a t i o n . m o n t h l y L i m i t)
. . . check b a l a n c e and a l l o w / deny t h e check . . .

}

Rule{ r e v o k e D e l e g a t i o n }{ r e v o k e D e l e g a t i o n . v e r s i o n ==1 &
d e l e g a t i o n = f i n d (r e v o k e D e l e g a t i o n (r e v o k e D e l e g a t i o n . accoun t ,

r e v o k e D e l e g a t i o n . pub l i cKey) &
owner (d e l e g a t i o n . a c o u n t)== d e l e g a t e . pub l i cKey }

{
moveToInac t ive (d e l e g a t i o n) ;

}

Figure 8. Delegation rules

Providing such an extensible system comes at a cost; we can-
not expect all of the statements to have a formal semantics. This is
a benefit as well since more statements can be expressed—as not
all statements that are possible or important to express are formal-
izable. To allow certificates to be automatically processed, without
requiring a formal meaning, it is necessary to associate actions with
the certificates. Because these actions are, in general, policy deci-
sions made by organizations the rules of the organization must be
encoded to perform these operations.

The SayAnything Certificate Architecture implements these
properties. It uses (strong) collision resistant one-way hash func-
tions to provide a completely distributed and succinct encoding of
the semantics of a certificate. It uses a rule-based language—based
on attribute-based trust management systems—to provide both au-
thorization (what is allowed) and the actions to be performed. Thus,
authentication (the producing and verification of certificates) is
cleanly separated from authorization (the acceptance and acting
upon certificates).

We are planning on building a variety of distributed systems
based on the SayAnything Certificate Architecture and will make
our software freely available so that others can use it. We believe
that this type of software can become a ubiquitous building block
for secure distributed systems.

References
[ASZ96] D. Atkins, W. Stallings, and P. Zimmermann. RFC 1991:

PGP message exchange formats, August 1996. Status:
INFORMATIONAL.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct
anonymous attestation. In 11th ACM Conference on
Computer and Communications Security (CCS). ACM
SIGSAC, 2004.

[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
RFC 2704: The KeyNote Trust-Management System Version
2, September 1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
trust management. In Proc. IEEE Symp. Security and

Privacy, 1996.

[BFS04a] Elisa Bertino, Elena Ferrari, and Anna Squicciarini. Trust
negotiations: Concepts, systems, and languages. Computing
in Science and Engg., 6(4):27–34, 2004.

[BFS04b] Elisa Bertino, Elena Ferrari, and Anna Cinzia Squicciarini.
Trust-X : A peer-to-peer framework for trust establishment.
IEEE Transactions on Knowledge and Data Engineering,
16(7):827–842, July 2004.

[Bib77] K. Biba. Integrity considerations for secure computer
systems. Technical Report TR-3153, MITRE Corp, Bedford,
MA, 1977.

[BL76] D. Bell and L. LaPadula. Secure computer systems: Unified
exposition and Multics interpretation. Technical Report
MTR-2997, MITRE Corp., Bedford, MA, July 1976.

[BS00] Piero Bonatti and Pierangela Samarati. Regulating service
access and information release on the web. In CCS ’00:
Proceedings of the 7th ACM conference on Computer and
communications security, pages 134–143, New York, NY,
USA, 2000. ACM Press.

[CL96] Bruno Crispo and T. Mark A. Lomas. A certification scheme
for electronic commerce. In Security Protocols Workshop,
pages 19–32, 1996.

[EFL+99] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest,
Brian Thomas, and Tatu Ylonen. RFC 2693: SPKI certificate
theory, September 1999.

[Ell99] Carl M. Ellison. RFC 2692: SPKI requirements. The Internet
Society, September 1999.

[HMM+00] Amir Herzberg, Yosi Mass, Joris Michaeli, Yiftach Ravid,
and Dalit Naor. Access control meets public key infras-
tructure, or: Assigning roles to strangers. In Proceedings of
the 2000 IEEE Symposium on Security and Privacy (S&P
2000), page 2, Washington, DC, USA, 2000. IEEE Computer
Society.

[Jim01] Trevor Jim. Sd3: A trust management system with certified
evaluation. In Proceedings of the 2001 IEEE Symposium on
Security and Privacy (S&P 2001), page 106, Washington,
DC, USA, 2001. IEEE Computer Society.

[KNT91] John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts’o.
The evolution of the kerberos authentication service. In
Proceedings of the Spring EurOpen’91 Conference, Tromso,
1991.

[Koh78] Loren M. Kohnfelder. Towards a practical public-key
cryptosystem. B.S. Thesis, supervised by L. Adleman,
May 1978.

[LABW92] Butler Lampson, Martı́n Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer
Systems, 10(4):265–310, 1992.

[LGF03] Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum.
Delegation logic: A logic-based approach to distributed
authorization. j-TISSEC, 6(1):128–171, February 2003.

[LL05] Jiangtao Li and Ninghui Li. OACerts: Oblivious attribute
certificates. In ACNS, pages 301–317, 2005.

[LM03] Ninghui Li and John C. Mitchell. A role-based trust-
management framework. discex, 01:201, January 19 2003.

[LWM03] Ninghui Li, William H. Winsborough, and John C. Mitchell.
Beyond proof-of-compliance: Safety and availability analy-
sis in trust management. In Proc. IEEE Symp. Security and
Privacy, 2003.

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer.
Kerberos authentication and authorization system. Technical
report, 1987.

[PS00] Joon S. Park and Ravi S. Sandhu. Binding identities and
attributes using digitally signed certificates. In ACSAC,
pages 120–127. IEEE Computer Society, 2000.

[RL96] Ronald L. Rivest and Butler Lampson. SDSI — a simple
distributed security infrastucture. Technical report, MIT,
April 1996.

[SWY+02] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child,
J. Jacobson, H. Mills, and L. Yu. Requirements for policy
languages for trust negotiation. In Third International
Workshop on Policies for Distributed Systems and Networks
(POLICY 2002), 2002.

[WYS+02] Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess,
Jared Jacobson, Ryan Jarvis, Bryan Smith, and Lina Yu.
Negotiating trust on the web. IEEE Internet Computing,
6(6):30–37, 2002.

	Introduction
	Design Considerations for a Certificate Architecture
	The SayAnything Certificate Architecture
	Examples
	Related work
	Conclusions

